
Finding and Exploiting 
0-days

(Yes, you can do this…)

17 January 2018 
John Kennedy (JK) 
Information Security Researcher 
OSCE, OSCP, GWAPT, CISSP 
Twitter:@clubjk 
Blog:jkcybersecurity.org 
Email:jk@jkcybersecurity.com 
https://github.com/clubjk

http://jkcybersecurity.org
mailto:jk@jkcybersecurity.com
https://github.com/clubjk


Agenda
• Examine HTTP packets in Wireshark
• Create a fuzzing template in Spike w 9 variables
• Fuzzing real world apps for vulnerable parameters
• Use of a binary debugger
• Replicate a fuzz crash in python
• Determine the offset
• Confirm EIP control
• Chose a return address and test it
• Adjust the ESP for planned shellcode location
• Confirm shellcode injects into stack without corruption
• Launch exploit and get remote shell



Statement of Humility

• I am not an expert 

• These are not stunts, but basic exploit moves 

• I’m just glad to be here



Story
Fuzzing - am I doing it correctly?



Set up target VM
Windows XP



Set up the app in lab



Browsed to in it Kali



Examined in Wireshark



Mocked up the GET 
request in Spike 

• 2 should crash 
• Rest are controls



Began to fuzz…



First variable

Crashed as hoped



8th variable

Also crashed as hoped



Last variable

Crashed! 
Unexpected 
Interesting…



Caught Crash in Binary Debugger



Overwrote the SEH Chain with Our String



Passed exception to debugger and overwrote the EIP



Replicated the Crash String in Python

crash variable



On our way



EIP Ownage



Return Address Planning

No SafeSEH Protection



Dll choice



Looking for ‘pop pop ret’ 



That’ll work…

No Null Bytes



Put retadd in string



Stepped to RET



Inspected stack pointer



Confirmed enough space in stack 
for over 400 bytes (for shellcode)



Added a short jump



Created shellcode



Exploit with shellcode



Analyzed shellcode in memory 
for corruption and operation



Tested exploit



Made exploit submission-
ready



Aaaaand it made the board…

But, there’s always someone better…

Me

Someone
 better



Summary
• Examined the HTTP packets in Wireshark
• Created a fuzzing template in Spike w 9 variables
• Fuzzed and found a previously undisclosed  vulnerable 

parameter
• Replicated the crash in python
• Determined the offset
• Confirmed EIP control
• Chose a return address and tested it
• Adjusted the ESP  to planned shellcode location
• Confirmed shellcode injected into stack without corruption
• Ran exploit and got shell



Questions?


