
Iptables - practical

Oskar Andreasson
blueflux@koffein.net

Introduction

 The speaker
 A brief Table of Contents

The speaker - that is me

 Oskar Andreasson
 From Sweden
 Used Linux since 1994.
 Written about Iptables since 2.4 kernels
 My reliability
 I am here as a private person.
 No companies in my back.
 I will say what I like and don’t like.
 I am not here to sell.

A brief Table of Contents

Table of Content
 Introduction - finished after this slide
 Iptables - what is it
 Packet traversal
 Iptables syntax
 A simple example ruleset
 Final notes

Iptables - what is it

Table of Content
 The Linux 2.4 IP filter solution
 Basic functionalities
 What iptables is not
 What this means in reality

Iptables - The Linux 2.4 IP filter solution

Where did it come from
 BSD -> Linux 2.0 (ipfw)
 Linux 2.0 (ipfw) -> Linux 2.2 (ipchains)
 Rusty Russell
 Linux 2.2 (ipchains) -> Linux 2.4 (iptables)
 Rusty Russell
 Netfilter core team
 Others

Iptables - The Linux 2.4 IP filter solution

By whom was it written
 The Netfilter core team
 A small group of large contributors (single persons).
 The main group of people developing Netfilter/iptables.
 Governs the main iptables tree.

 The core team consists of:
 Rusty Russell
 Jozsef Kadleczic
 Marc Boucher
 James Morris
 Harald Welte

 Others:
 Anyone with the time or will to contribute.

Iptables - Basic functionalities - IP Filter

IP Filter
 Used to filter packets
 The command to enter a rule is called iptables
 The framework inside kernel is called Netfilter
 Full matching on IP, TCP, UDP and ICMP packet headers
 Lesser matching on other packet headers possible
 Exception in TCP is the Options field

IP Filter rule
 Insertion point
 Match
 Target

Iptables - Basic functionalities - Stateful firewalling

Full state matching
 TCP
 UDP
 ICMP

Other protocols
 Uses a generic connection tracking module
 The generic conntrack module is less specific
 It is possible to write your own conntrack modules
 Certain protocols are "complex"
 Requires extra modules called "conntrack helpers"
 Examples are FTP, IRC (DCC), AH/ESP and ntalk

Iptables - Basic functionalities - Stateful firewalling (cont.)

Userland states
 NEW
 All new connections
 Includes Non SYN TCP packets
 ESTABLISHED
 All connections that has seen traffic in both directions
 RELATED
 All connections/packets related to other connections
 Examples: ICMP errors, FTP-Data, DCC
 INVALID
 Certain invalid packets depending on states
 E.g. FIN/ACK when no FIN was sent

Iptables - Basic functionalities - NAT

NAT - Network Address Translation

The science of switching Source or Destination Addresses

Two types of NAT in Linux 2.4
 Netfilter NAT
 Fast NAT

Prohibited in IPv6
Next to a must in IPv4

Usages
 Making a LAN look as if it came from a single source (the firewall)
 Creating separate servers with a single IP

Iptables - Basic functionalities - NAT (cont.)

Netfilter NAT
 DNAT - Destination Network Address Translation
 SNAT - Source Network Address Translation
 Requires Connection tracking to keep states and expectations

Iptables - Basic functionalities - Packet Mangling

Mangling packets going through the firewall
Gives you the ability to a multitude of possibilities.
Example usages
 Strip all IP options
 Change TOS values
 Change TTL values
 Strip ECN values
 Clamp MSS to PMTU
 Mark packets within kernel
 Mark connections within kernel

Iptables - What iptables is not

Not a proxy solution
 Very common misconception
 Use squid instead

Not a packet data filtering solution
 Very closely related to the above problem
 Use squid and snort for this kind of usage

A complete firewall
 Lacks several features, which should always reside in userspace
 A good NIDS (snort)
 A filtering proxy solution (squid)

Iptables - What this means in reality

A framework for filtering connections
 Via the filter table
 Powerful and flexible

A framework for accounting
 Via the filter table
 Using the built in packet and byte counters

A simple way to do Network Address Translation
 Good flexibility
 Possible to use even for complex protocols

Ability to mangle packets
 Extremely powerful
 Useful for all sorts of situations

Packet traversal

Table of Content
 Introduction
 Tables
 How they hook together
 Traversal of a single chain

Packet traversal - Introduction

How a packet traverses the inside of the kernel
 Extremely important to understand
 Horrible mistakes possible

3 basic tables
 filter (default)
 nat
 mangle

Each table contains a number of chains
Userspecified chains may be specified in a table
The main chains may then call the userspecified chains

Packet traversal - Tables

Filter table

 Used for filtering

 Contains 3 chains
 INPUT
 OUTPUT
 FORWARD

 Certain targets may not be used here
 NAT targets
 Mangle targets
 Filtering targets works perfectly

Packet traversal - Tables

Nat table

 Used for Network Address Translation

 Only the first packet of a connection hits this table
 Subsequent packets in the connection has the same action taken
 Avoid pure filtering in this chain!

 Contains 3 chains
 PREROUTING
 POSTROUTING
 OUTPUT

Packet traversal - Tables

Mangle table

 Used for mangling packets

 Only the first packet in a connection hits this table
 Same as for the nat table

 Contains 3 or 5 chains
 PREROUTING
 POSTROUTING
 OUTPUT
 INPUT (with mangle5hooks patch or new kernel)
 FORWARD (same here)

Packet traversal - How they hook together

Packet traversal - Traversal of a single chain

Iptables syntax

Table of Content
 The basic iptables syntax
 A few matches
 Some targets
 ... and a few simple rules
 Listing the rules
 Flushing the ruleset
 Deleting user-created chains

Iptables syntax - The basic iptables syntax

iptables [command] [options] <matches> <target>

 Commands:
 append, insert, replace, delete, list, policy, etc.
 Options:
 verbose, line numbers, exact, etc.
 Matches:
 dport, dst, sport, src, states, TCP options, owner, etc.
 Targets:
 ACCEPT, DROP, REJECT, SNAT, DNAT, TOS, LOG, etc.

Iptables syntax - A few matches

Protocol
-p, --protocol [!] [protocol]
 tcp, udp, icmp or all
 Numeric value
 /etc/protocols

Destination IP & Port
-d, --destination [!] address[/mask]
 Destination address
 Resolvable (/etc/resolve.conf)

--dport, --destination-port [!] port[:port]
 Destination port
 Numeric or resolvable (/etc/services)
 Port range

Iptables syntax - A few matches (cont.)

Source IP & Port
-s, --source [!] address[/mask]
 Source address
 Resolvable (/etc/resolve.conf)

--sport, --source-port [!] port[:port]
 Source port
 Numeric or resolvable (/etc/services)
 Port range

Iptables syntax - A few matches (cont.)

Incoming and Outgoing interface
-i, --in-interface [!] interface
 Input interface
 + mask

-o, --out-interface [!] interface
 Output interface
 + mask

Iptables syntax - Some targets

ACCEPT
 Accepts the packet
 Ends further processing of the specific chain
 Ends processing of all previous chains
 Except other main chains and tables

DROP
 Drops the packet
 No reply
 Ends all further processing

Iptables syntax - Some targets (cont.)

REJECT
 Drops packet
 Returns a reply
 User specified reply
 Calculated reply
 TCP-RST or ICMP errors
 Ends all further processing

RETURN
 Returns from a chain to the calling chain

Iptables syntax - ... and a few simple rules

iptables -A INPUT -p tcp -m state --state NEW ! --syn -j REJECT --reject-with
tcp-reset

iptables -A INPUT -p tcp --dport 80:1024 -j DROP

iptables -A FORWARD -p tcp --dport 22:113 -j DROP
iptables -A FORWARD -p tcp --dport ftp-data:ftp -j DROP

iptables -A OUTPUT -p tcp -o eth0 -j ACCEPT
iptables -A OUTPUT -p tcp -o lo -j ACCEPT
iptables -P OUTPUT DROP

Iptables syntax - Listing the rules

-L, --list [chain]
 Lists ruleset in a table

-n, --numeric
 Turns off name resolutions

-v, --verbose
 Verbose output

Iptables syntax - Listing the rules

Iptables syntax - Flushing the ruleset

-F, --flush [chain]
 Flushes (erases) all rules in a chain
 Or a table

iptables -F INPUT

iptables -F

Iptables syntax - Creating & Deleting user-created chains

-N, --new chain
 Creates a user-specified chain
 There must be no target with that name previously

-X, --delete-chain [chain]
 Deletes a user-created chain
 No rules may reference the chain
 Can delete all user-created chains in a table

Iptables syntax - Creating & Deleting user-created chains
(cont.)

Creating...
iptables -t filter -N badtcppackets

and Deleting a chain
iptables -t filter -X badtcppackets

and Deleting all user-created chains
iptables -t filter -X

A simple example ruleset

Table of Content
 The goals
 The POSTROUTING chain
 The INPUT chain
 The OUTPUT chain
 The FORWARD chain
 And the complete ruleset

A simple example ruleset - The goals

The firewall
 Will act as its own firewall
 Incoming:
 ICMP Echo request & reply
 Identd requests
 HTTP requests
 Outgoing:
 Everything generated by the host
 Except "nonet" group
And a LAN
 From Internet to LAN
 Related traffic
 Established traffic
 From LAN to Internet
 Everything

A simple example ruleset - The technical details

Firewall
 LAN on eth0
 LAN IP 192.168.1.1
 Internet on eth1
 Internet IP 10.0.0.1/32

LAN
 IP range 192.168.1.0/24

A simple example ruleset - The POSTROUTING chain

We need SNAT to let our LAN out on the Internet
Without this, the Internet don’t know where to route the packets

iptables -t nat -A POSTROUTING -i eth0 -o eth1 -j SNAT \
--to-source 10.0.0.1

A simple example ruleset - The INPUT chain

Need to allow all incoming traffic specified in goals
Need to allow return traffic for everything we send
Default to DROP

iptables -P INPUT DROP
iptables -A INPUT -p tcp --dport 113 -j ACCEPT
iptables -A INPUT -p tcp --dport 80 -j ACCEPT
iptables -A INPUT -p icmp --icmp-type 8 -j ACCEPT
iptables -A INPUT -p icmp --icmp-type 0 -j ACCEPT
iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

A simple example ruleset - The OUTPUT chain

Accept everything except the nonet group to leave

iptables -A OUTPUT -m owner --gid-owner nonet -j DROP

A simple example ruleset - The FORWARD chain

Everything from LAN to Internet
ICMP replies, related and Established traffic from Internet to LAN

iptables -P FORWARD DROP
iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT
iptables -A FORWARD -i eth1 -m state \
--state ESTABLISHED,RELATED -j ACCEPT

A simple example ruleset - And the complete ruleset

iptables -P FORWARD DROP
iptables -P INPUT DROP
iptables -P OUTPUT ACCEPT

iptables -t nat -A POSTROUTING -i eth0 -o eth1 \
-j SNAT --to-source 10.0.0.1

iptables -A INPUT -p tcp --dport 113 -j ACCEPT
iptables -A INPUT -p tcp --dport 80 -j ACCEPT
iptables -A INPUT -p icmp --icmp-type 8 -j ACCEPT
iptables -A INPUT -p icmp --icmp-type 0 -j ACCEPT
iptables -A INPUT -m state --state ESTABLISHED,RELATED \
-j ACCEPT

iptables -A OUTPUT -m owner --gid-owner nonet -j DROP

iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT
iptables -A FORWARD -i eth1 -m state \
--state ESTABLISHED,RELATED -j ACCEPT

echo 1 > /proc/sys/net/ipv4/ip_forward

Final notes

Table of Content
 Graphical User Interfaces
 Other resources

Final notes - Graphical User Interfaces

IP Menu

http://users.pandor.be/stes/ipmenu.html

Final notes - Graphical User Interfaces

fwbuilder

http://www.fwbuilder.org

Final notes - Graphical User Interfaces

EasyTables

http://dejavo.virtualave.net/projects/easytables/

Final notes - Graphical User Interfaces

Turtle Firewall

http://turtlefirewall.sourceforge.net

Final notes - Graphical User Interfaces

KNetfilter

http://expansa.sns.it:8080/knetfilter/

Final notes - Other resources

http://www.netfilter.org

http://iptables-tutorial.haringstad.com

http://www.linuxguruz.org/iptables/

http://www.islandsoft.net/veerapen.html

http://www.lartc.org

http://www.docum.org

