
Iptables - theoretical

Oskar Andreasson
blueflux@koffein.net

Introduction

 The speaker
 A brief Table of Contents

The speaker - that is me

 Oskar Andreasson
 From Sweden
 Used Linux since 1994.
 Written about Iptables since 2.4 kernels
 My reliability
 I am here as a private person.
 No companies in my back.
 I will say what I like and don’t like.
 I am not here to sell.

A brief Table of Contents

Table of Content
 Introduction
 Iptables - what is it
 Packet traversal
 Complexity
 The evolved ruleset
 Final notes

Iptables - what is it

Table of Content
 The Linux 2.4 IP filter solution
 Basic functionalities
 What iptables is not
 What this means in reality

Iptables - The Linux 2.4 IP filter solution

Where did it come from
 BSD -> Linux 2.0 (ipfw)
 Linux 2.0 (ipfw) -> Linux 2.2 (ipchains)
 Rusty Russell
 Linux 2.2 (ipchains) -> Linux 2.4 (iptables)
 Rusty Russell
 Netfilter core team
 Others

Iptables - The Linux 2.4 IP filter solution (cont.)

By whom was it written
 The Netfilter core team
 A small group of large contributors (single persons).
 The main group of people developing Netfilter/iptables.
 Governs the main iptables tree.

 Others:
 Anyone with the time or will to contribute.

Iptables - Basic functionalities - Stateful firewalling

Full state matching
 TCP
 UDP
 ICMP

Other protocols
 Uses a generic connection tracking module
 The generic conntrack module is less specific
 It is possible to write your own conntrack modules
 Certain protocols are "complex"
 Requires extra modules called "conntrack helpers"
 Examples are FTP, IRC (DCC), AH/ESP and ntalk

Iptables - Basic functionalities - Stateful firewalling (cont.)

Userland states
 NEW
 All new connections
 Includes Non SYN TCP packets
 ESTABLISHED
 All connections that has seen traffic in both directions
 RELATED
 All connections/packets related to other connections
 Examples: ICMP errors, FTP-Data, DCC
 INVALID
 Certain invalid packets depending on states
 E.g. FIN/ACK when no FIN was sent

Iptables - Basic functionalities - Stateful firewalling (cont.)

TCP
 Internal states
 Patches allows matching on internal states
 Patches implements full Window tracking

Caution
 Does not care about SYN flag in new TCP streams!

Useful resources
 RFC 793 pp. 21-24

Iptables - Basic functionalities - Stateful firewalling (cont.)

TCP states

TCP Connecting states

Iptables - Basic functionalities - Stateful firewalling (cont.)

TCP States

TCP Closing states

Iptables - Basic functionalities - Stateful firewalling (cont.)

UDP
 A connectionless protocol
 Possible to set states anyway
 Less specific than TCP

Iptables - Basic functionalities - Stateful firewalling (cont.)

UDP States

UDP Connecting states

Iptables - Basic functionalities - Stateful firewalling (cont.)

ICMP
 Even this protocol has states
 They can be NEW or ESTABLISHED

NEW and ESTABLISHED
 ICMP Echo request and reply
 ICMP Timestamp request and reply
 ICMP Information request and reply
 ICMP Address mask request and reply
 All error messages related to other connections.

Iptables - Basic functionalities - Stateful firewalling (cont.)

ICMP States

ICMP Ping states

Iptables - Basic functionalities - Stateful firewalling (cont.)

ICMP States

TCP ICMP reply states
UDP behaves exactly the same way

Iptables - Basic functionalities - NAT

The science of switching Source or Destination Addresses

Two types of NAT in Linux 2.4
 Netfilter NAT
 Fast NAT

Prohibited in IPv6
Next to a must in IPv4

Usages
 Making a LAN look as if it came from a single source (the firewall)
 Creating separate servers with a single IP

Iptables - Basic functionalities - NAT (cont.)

Netfilter NAT
 DNAT - Destination Network Address Translation
 SNAT - Source Network Address Translation
 Relatively slow
 Extremely good granularity
 Requires Connection tracking to keep states and expectations

Fast NAT
 Implemented in the core TCP/IP stack
 Very fast
 Less granularity than Netfilter NAT
 No support for complex protocols
 Good support for one to one NAT

Iptables - Basic functionalities - NAT (cont.)

Netfilter NAT and Fast NAT mutually exclusive
 You can only use one of them at a time

Conclusion
 Netfilter NAT better when granularity needed
 Netfilter NAT better when complex protocols are used
 Fast NAT better when speed is of a consideration
 Fast NAT better for one to one NAT

Iptables - Basic functionalities - Packet Mangling

Mangling packets going through the firewall
Gives you the ability to a multitude of possibilities.
Example usages
 Strip all IP options
 Change TOS values
 Change TTL values
 Strip ECN values
 Clamp MSS to PMTU
 Mark packets within kernel
 Mark connections within kernel

Iptables - What iptables is not

Not a proxy solution
 Very common misconception
 Use squid instead

Not a packet data filtering solution
 Very closely related to the above problem
 Use squid and snort for this kind of usage

Iptables - What iptables is not (cont.)

Example of wrong usage of the string match
 Using the string match to drop nimda or sircam
 Results in dead unusable sockets on server and client
 and reject results in dead sockets on server
 Very effective DoS attack!

A complete firewall
 Iptables is not a complete firewall
 Lacks several features, which should always reside in userspace
 A good NIDS (snort)
 A filtering proxy solution (squid)
 Get rid of unnecessary services
 Get rid of HTTP, FTP, telnet, et al.
 These causes unnecessary security considerations

Iptables - What this means in reality

A framework for filtering connections
 Via the filter table
 Powerful and flexible

A framework for accounting
 Via the filter table
 Using the built in packet and byte counters

A simple way to do Network Address Translation
 Good flexibility
 Possible to use even for complex protocols

Ability to mangle packets
 Extremely powerful
 Useful for all sorts of situations

Packet traversal

Table of Content
 Introduction
 Tables
 Chains
 How they hook together
 A complete internal packet traversal path
 Traversal of a single chain

Packet traversal - Introduction

How a packet traverses the inside of the kernel
 Extremely important to understand
 Horrible mistakes possible

3 basic tables
 filter (default)
 nat
 mangle

Each table contains a number of chains
Userspecified chains may be specified in a table
The main chains may then call the userspecified chains

Packet traversal - Tables

Filter table

 Used for filtering

 Contains 3 chains
 INPUT
 OUTPUT
 FORWARD

 Certain targets may not be used here
 NAT targets
 Mangle targets
 Filtering targets works perfectly

Packet traversal - Tables (cont.)

Nat table

 Used for Network Address Translation

 Only the first packet of a connection hits this table
 Subsequent packets in the connection has the same action taken
 Avoid pure filtering in this chain!

 Contains 3 chains
 PREROUTING
 POSTROUTING
 OUTPUT

Packet traversal - Tables (cont.)

Mangle table

 Used for mangling packets

 Only the first packet in a connection hits this table
 Same as for the nat table

 Contains 3 or 5 chains
 PREROUTING
 POSTROUTING
 OUTPUT
 INPUT (with mangle5hooks patch or new kernel)
 FORWARD (same here)

Packet traversal - Chains

Filter table

INPUT
 Used to filter packets entering the firewall
 Only packets destined for the firewall itself

OUTPUT
 Used to filter packets leaving the firewall
 Only packets generated by the firewall itself

FORWARD
 Used to filter all packets passing through the firewall
 No traffic destined for the firewall will ever hit this chain
 Same goes for traffic generated by the firewall

Packet traversal - Chains (cont.)

Nat table

PREROUTING
 Used to DNAT packets
 Hit before routing decision is made

POSTROUTING
 Used to SNAT packets
 Hit after routing decision is made

OUTPUT
 Used to DNAT and SNAT all locally generated packets
 Hit before and after routing decision is made

Packet traversal - Chains (cont.)

Mangle table

PREROUTING
 Used to mangle packets before routing decision is made

POSTROUTING
 Used to mangle packets after routing decision is made

OUTPUT
 Used to mangle packets created by the firewall
 Hit before routing decision is made

Packet traversal - Chains (cont.)

Mangle table (cont.)

INPUT (with mangle5hooks patch or new kernel)
 Used to mangle packets destined for the firewall
 Hit after routing decision is made

FORWARD (With mangle5hooks patch or new kernel)
 Used to mangle packets routed through the firewall
 Hit after the first routing decision
 Hit before the second routing decision

Packet traversal - How they hook together

Packet traversal - A complete internal packet traversal path

To the firewall
 PREROUTING, mangle
 PREROUTING, nat
 Routing decision
 INPUT, mangle
 INPUT, filter

From the firewall
 Routing for source address
 OUTPUT, mangle
 OUTPUT, nat
 OUTPUT, filter
 Routing decision
 POSTROUTING, nat
 POSTROUTING, mangle

Packet traversal - A complete internal packet traversal path
(cont.)

Forwarded through the firewall
 PREROUTING, mangle
 PREROUTING, nat
 Routing decision
 FORWARD, mangle
 FORWARD, nat
 Routing decision
 POSTROUTING, nat
 POSTROUTING, mangle

Packet traversal - Traversal of a single chain

Complexity

Table of Content
 Complex protocols
 Remote managing the firewall
 SNAT
 DNAT

Complexity - Complex protocols

What is a complex protocol?
 Opens a control channel
 Opens subconnections
 Subconnection ports decided in control channel
 Netfilter can not work on complex protocols per default

Helpers
 Helps netfilter work on complex protocol
 Helpers (generally) contain two parts
 Connection tracking part (ip_conntrack_*)
 NAT part (ip_nat_*)

Complexity - Complex protocols (cont.)

FTP
 Uses 2 ports
 FTP Control
 FTP Data
 FTP Control
 Controls the session
 Negotiates ports for Data connections
 FTP Data
 Sends all data in a connection
 Active mode
 Client opens data connections
 Passive mode
 Server opens data connections
ip_conntrack_ftp
ip_nat_ftp

Complexity - Complex protocols (cont.)

IRC
 Uses 1 port normally
 Uses extra ports to handle DCC
 IRC negotiates DCC ports
 DCC are used for direct chats and filesends
 DCC connections are initiated by calling part

ip_conntrack_irc
ip_nat_irc

Complexity - Complex protocols (cont.)

Other helpers currently available
 Basic SNMP-ALG (RFC 2962)
 talk, ntalk, ntalk2 (development)
 tftp (development)
 PPTP (development)
 eggdrop (IRC bots, development)
 GRE + PPTP (development, partial)
 H.323 (development, netmeeting only)

Other protocols in need helpers
 ICQ file sharing
 Real Audio servers
 Tunneling protocols
 Proprietary protocols

Complexity - Remote managing the firewall

via SSH
 Simple
 iptables works perfectly in SSH
 Only requires SSH to be open
via HTTP and CGI
 Complicated
 Requires HTTP & possibly dangerous CGI scripts
 Fairly good solution for broadband ISP functionality
 No publicly available solutions
via VNC
 Requires quite some bandwidth
 Requires VNC to be open
 Possible to use GUI configuration solutions

Complexity - SNAT

Source Network Address Translation
 Ability to let hosts onto the Internet without real IP’s
 Used for "hiding" local networks
 SNAT target
 All SNAT’ed packets will look as if they came from specified IP
 Only possible in the POSTROUTING chain in the nat table

Example
iptables -t nat -A POSTROUTING -i $LAN_IFACE \
-j SNAT --to-source $INET_IP

Complexity - DNAT

Destination Network Address Translation
 Can be used for putting servers on internal networks
 Redirects packets to one destination to another
 Load balancing
 Only possible in PREROUTING in the nat table

Example
iptables -t nat -A PREROUTING -d 10.0.0.1 --dport 80 \
-j DNAT --to-destination 192.168.1.2

Complexity - DNAT (cont.)

Getting it to work from the same network
 Will cause routing troubles if client is on the same network
 Client will not recognize responses from server

Solution
 Make all packets go back through the firewall and get DNAT’ed
 Done via SNAT

Example:
iptables -t nat -A PREROUTING -d 10.0.0.1 --dport 80 \
-j DNAT --to-destination 192.168.1.2
iptables -t nat -A POSTROUTING -d 192.168.1.2 --dport 80 \
-j SNAT --to-source 192.168.1.1

Complexity - DNAT (cont.)

and from the firewall
 Packets generated by the firewall will not get DNAT’ed
 Packets will hence go to the firewall itself

Solution
 Use DNAT in the OUTPUT chain in the nat table

Example:
iptables -t nat -A PREROUTING -d 10.0.0.1 --dport 80 \
-j DNAT --to-destination 192.168.1.2
iptables -t nat -A OUTPUT -d 10.0.0.1 --dport 80 \
-j DNAT --to-destination 192.168.1.2
iptables -t nat -A POSTROUTING -d 192.168.1.2 --dport 80 \
-j SNAT --to-source 192.168.1.1

The evolved ruleset

Table of Content
 Our evolved goals
 The technical details
 The PREROUTING chain
 The POSTROUTING chain
 The FORWARD chain
 The INPUT chain
 The OUTPUT chain
 And the complete ruleset

The evolved ruleset - Our evolved goals

Same goals as before
 Internal network need Internet access
 HTTP to access to everyone
 Identd ability
 All except group "nonet" to have net access
New goals
 HTTP server separated and put on LAN
 FTP clients to work properly
 GRE Tunnel from internal to external server
 Microsoft Netmeeting

The evolved ruleset - The technical details

Firewall
 LAN on eth0
 LAN IP 192.168.1.1
 Internet on eth1
 Internet IP 10.0.0.1/32

LAN
 IP range 192.168.1.0/24
 FTP to Internet
 Microsoft Netmeeting to Internet
 GRE server at 192.168.1.10
 HTTP server 192.168.1.2

The evolved ruleset - The PREROUTING chain

DNAT all packets to HTTP port
Do not forget OUTPUT DNAT
DNAT all packets to GRE
Does not require OUTPUT DNAT

iptables -t nat -A PREROUTING -p gre -d 10.0.0.1 \
-j DNAT --to-destination 192.168.1.10
iptables -t nat -A PREROUTING -p tcp -d 10.0.0.1 --dport 80 \
-j DNAT --to-destination 192.168.1.2
iptables -t nat -A OUTPUT -p tcp -d 10.0.0.1 --dport 80 \
-j DNAT --to-destination 192.168.1.2

The evolved ruleset - The POSTROUTING chain

SNAT all normal traffic to Internet
SNAT all packets to HTTP server (as described previously)
SNAT all packets to GRE server

iptables -t nat -A POSTROUTING -i eth0 -o eth1 -j SNAT \
--to-source 10.0.0.1
iptables -t nat -A POSTROUTING -o eth0 -d 192.168.1.2 -j SNAT \
--to-source 10.0.0.1
iptables -t nat -A POSTROUTING -o eth0 -d 192.168.1.10 -j SNAT \
--to-source 10.0.0.1

The evolved ruleset - The FORWARD chain

Allow DNAT’ed packets through
Allow all traffic from LAN to Internet
Allow established and related from Internet to LAN
Drop everything else

iptables -P FORWARD DROP

iptables -A FORWARD -p tcp -i eth1 -o eth0 -d 192.168.1.2 \
--dport 80 -j ACCEPT
iptables -A FORWARD -p gre -i eth1 -o eth0 -d 192.168.1.10 \
-j ACCEPT
iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT
iptables -A FORWARD -i eth1 -m state \
--state ESTABLISHED,RELATED -j ACCEPT

The evolved ruleset - The INPUT chain

Identd runs on firewall
Allow ICMP Echo & reply
Allow established & related connections back in

iptables -P INPUT DROP

iptables -A INPUT -p tcp --dport 113 -j ACCEPT
iptables -A INPUT -p icmp --icmp-type 8 -j ACCEPT
iptables -A INPUT -p icmp --icmp-type 0 -j ACCEPT
iptables -A INPUT -m state --state ESTABLISHED,RELATED \
-j ACCEPT

The evolved ruleset - The OUTPUT chain

And the "nonet" group is blocked again

iptables -A OUTPUT -m owner --gid-owner nonet -j DROP

The evolved ruleset - The complete ruleset

iptables -P FORWARD DROP
iptables -P INPUT DROP
iptables -P OUTPUT ACCEPT

iptables -t nat -A PREROUTING -p gre -d 10.0.0.1 \
-j DNAT --to-destination 192.168.1.10
iptables -t nat -A PREROUTING -p tcp -d 10.0.0.1 --dport 80 \
-j DNAT --to-destination 192.168.1.2
iptables -t nat -A OUTPUT -p tcp -d 10.0.0.1 --dport 80 \
-j DNAT --to-destination 192.168.1.2

iptables -t nat -A POSTROUTING -i eth0 -o eth1 -j SNAT \
--to-source 10.0.0.1
iptables -t nat -A POSTROUTING -o eth0 -d 192.168.1.2 -j SNAT \
--to-source 10.0.0.1
iptables -t nat -A POSTROUTING -o eth0 -d 192.168.1.10 -j SNAT \
--to-source 10.0.0.1

The evolved ruleset - The complete ruleset (cont.)

iptables -A FORWARD -p tcp -i eth1 -o eth0 -d 192.168.1.2 \
--dport 80 -j ACCEPT
iptables -A FORWARD -p gre -i eth1 -o eth0 -d 192.168.1.10 \
-j ACCEPT
iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT
iptables -A FORWARD -i eth1 -m state \
--state ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -p tcp --dport 113 -j ACCEPT
iptables -A INPUT -p icmp --icmp-type 8 -j ACCEPT
iptables -A INPUT -p icmp --icmp-type 0 -j ACCEPT
iptables -A INPUT -m state --state ESTABLISHED,RELATED \
-j ACCEPT

iptables -A OUTPUT -m owner --gid-owner nonet -j DROP

echo 1 > /proc/sys/net/ipv4/ip_forward

Final notes - Other resources

http://www.netfilter.org

http://iptables-tutorial.haringstad.com

http://www.linuxguruz.org/iptables/

http://www.islandsoft.net/veerapen.html

http://www.rfc-editor.org

http://www.lartc.org

http://www.docum.org

