

❑ Stephen M. Nugen ◆ smnugen@nugensoft.com ◆ Tech Center: 402.505.7691 ❑ Background ◆ BS CS; MS CprE ◆ 20+ years experience ◆ Artificial Intelligence Principle Investigator at lowa State University Expert systems, neural networks, flaw-classification ♦ Information Security CISSP (Certified Information Systems Security Professional) Train/teach/present Information Security topics ❑ Affiliations

Stephen Nuge

Slid

NuGenSoft (CxO)

NebraskaCERT (CIO), InfraGard, CSM, NUCIA

Presenter's Background (Prejudices)

braskaCERT Conference 2003

Context MI/AI (Machine/Artificial Intelligence) techniques have been proposed to * #1: Automate the discovery of new vulnerabilities * #2: Detect (and protect from) misuse (exploitation of vulnerabilities) Most of the literature focuses on #2.

- □ Presenter in 2002 (slides available from conf web site)
- Focused on #2
 - Included few (mostly unsubstantiated) claims about #1
- Presenter in 2003
- Focusing on #1
- Including a few (mostly unsubstantiated) claims about #2

T Conference 2003

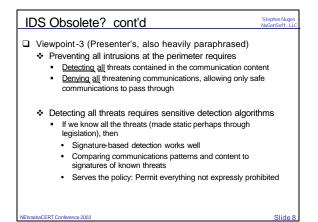
Structure	Stephen Nugen NuGenSoft, LLC
Caveat: Not a tutorial, but rather a non-linear sto possible futures, naturally subjective	ry about
Part-1: Intrusion detection	
 Recent comments by Gartner regarding future of Intrinsic tradeoffs and constraints Sensitivity versus Accuracy Sensitivity versus Capacity Constraints more critical if the pace of vulnerability increases 	
 Part-2: Vulnerability discovery Al techniques will increase the pace of vulnerabili Basis for that claim 	ty discovery
 Part-3: Summary observations Q&A, Discussion, Rebuttal, etc. 	
NEbraskaCERT Conference 2003	Slide 4

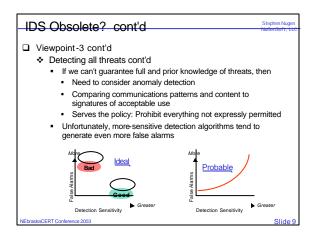
Part-1: IDS Obsolete?

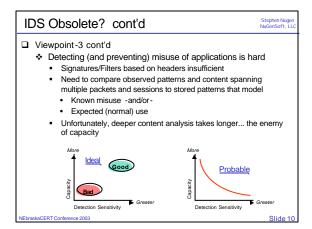
Stephen Nuger

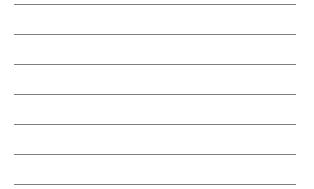
Slide

- □ June 2003: Gartner predicts that by 2005, IDS won't be necessary or in use
 - "IDS as a security technology is going to disappear"
 - Richard Stiennon, Gartner research director
 Src: Information Week, June 13, 2003
- Viewpoint-1 (classic, vendors)


aCERT Conference 2003


ERT Con


- \clubsuit Only thing worse than detecting compromise is not detecting it
- Organizations putting all their trust in perimeter defenses are
- hard and crunchy on the outside, with soft chewy centers
- $\boldsymbol{\diamondsuit}$ Newer safer aircraft haven't made black boxes obsolete
- Rule #1: If we can't guarantee 100% protection, then we need to instrument and learn from our failures
- ✤ Rule #2: We can't guarantee 100% protection


IDS Obsolete? cont'd Stephen Nager Noteshort to Viewpoint -2 (Gartner's, heavily paraphrased) Intrusion-detection systems don't provide enough value to justify their high cost Costly Acquisition, training, maintenance, etc. Hard to configure and keep well-configured in dynamic environments Limited value Too many false positives Wasted scarce talent Real alerts buried in mountains of false alarms Unable to monitor all traffic at high data rates (> 600 Mbps)

IDS Obsolete? cont'd	Stephen Nugen NuGenSoft, LLC
Viewpoint-2 cont'd	
So, by 2005, the smart crowd will be	
 Purchasing 	
 Intrusion-<u>prevention</u> products 	
 Instead of old-fashioned intrusion-detection product no longer needed since there won't be anything past the firewall 	
 Focusing on 	
 Smarter firewalls protecting networks, services, an applications 	d
 Continuous vulnerability assessment and remediat 	ion
 Gartner isn't forecasting new detection technologie: a consolidation of preventive and detective function single appliance 	,
 Presumably cylindrical, tapered at one end, and silver 	
NEbraskaCERT Conference 2003	Slide 7

IDS Obsolete? cont'd

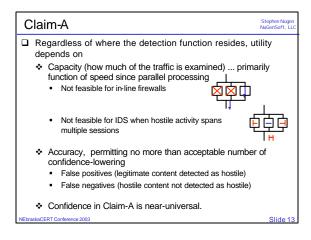
Stephen Nuger

- □ Viewpoint-3 cont'd
 - Cost impact of moving sensitive detection from monitoring-only IDS to in-line firewalls
 - False positives in IDS
 - Alert, but no communications interruption
 - Cost to Users: None (except less-responsive IT staff)
 - Cost to IT staff: Wasted time, greater difficulty recognizing
 True Positives
 - False positives in Firewall
 - Prevent legitimate communications, and alert
 - Cost to Users: Varies, sometimes severe
 - Cost to Users: Wasted time, greater difficulty recognizing True Positives, more time hiding from angry users

IDS Obsolete? cont'd

Stephen Nuge

Slide 11


Viewpoint-3 cont'd

ERTC

CERT Conference 2003

Cost impact of moving detection from IDS to firewalls cont'd

- Deeper, more complex, slower detection in IDS
 - Some high-speed traffic not examined
 - Cost to organization: Potential false negatives (misuse not detected)
- Deeper, more complex, slower detection in firewall
 - Some high-speed traffic delayed or discarded
 - Cost to organization: Varies, potential self-inflicted lost productivity or partial DoS (protocol timers expire)

Claim-B cont'd

Stephen Nuge

Detection utility also depends on:

- How quickly our detection methods and implementations adapt/evolve, relative to speed at which attacks evolve
 Quickness of adaptation directly impacts accuracy
- How efficiently our detection methods and implementations adapt/evolve in response to evolving attacks
 - Efficiency of adaptation directly impacts capacity
- Confidence in Claim-B less universal, but growing in response to
 - Multi-vector attacks like NIMDA
 - Evolving malware like SoBig
 - Quick+o-market exploits like ShadowCode and RPC/DCOM exploits from Xfocus and Metasploit

EbraskaCERT Conference 2003

Claim-C MI/AI techniques can and will be used

Stephen Nuger

Slide 14

- MI/AI techniques can and will be used to assist in the discovery of new vulnerabilities in commercial and custom software
 - $\boldsymbol{\diamondsuit}$ Increasing the number of exploitable vulnerabilities
 - $\boldsymbol{\diamondsuit}$ Increasing the speed at which attacks can evolve
- □ Importance: If (Claim-A True and Claim-B True and Claim-C True and Claim-X False) Then
 - Speed at which attacks evolve will increase relative to speed of detection adaptations
 - More vulnerabilities and corresponding exploits increase the difficulty of vendors
 - · Updating misuse signatures
 - · Patching the vulnerability

More attacks succeed

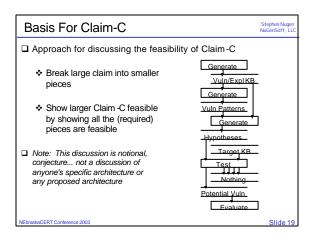
askaCERT Conference 2003

Claim-X	Stephen Nugen NuGenSoft, LLC
Claim-X: Effective countermeasures will counteract a attack advantage realized by Claims -A, -B, and -C	ny
 Claim-X1: Software designed for greater security will far fewer vulnerabilities, so breadth and speed of disc unimportant Confidence in X1 outside the scope of this presentation 	overy is
□ Claim-X2: Advantages gained by using MI/AI for fast	
discovery offset by using MI/AI for faster detection ad Fight fire with fire	
 Different discussion In any case, A^B^C increase demand for for X1 and X 	2
NEbraskaCERT Conference 2003	Slide 16

Claim-C (again)

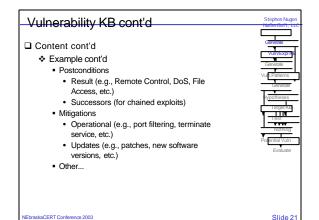
- □ So, will focus on the feasibility of C because if C is feasible, then MI/AI techniques can be used
 - * To help software providers discover and remove vulnerabilities To hop bothate provide a laborer and remove validation and exploited
 To provide an advantage to less constrained attackers relative to more-constrained defenders
- If (A^B^C) True then we need to increase the agility (and maybe the depth?) of our countermeasures

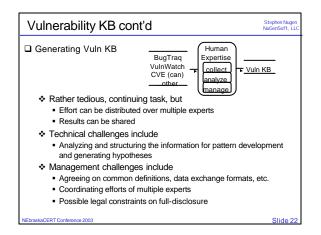
kaCERT Conference 2003


NEbraskaCERT Conference 2003

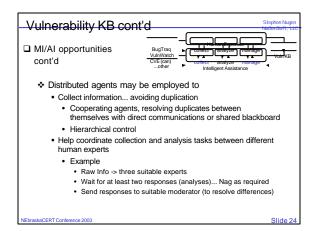
Slide 17

Slide 18

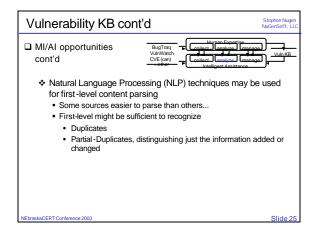

Stephen Nugen NuGenSoft, LLC

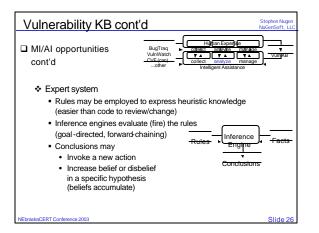

Part-2: Vulnerability Discovery	Stephen Nugen
 Note: For this discussion, vulnerability discovery distivulnerability scanning and (most) penetration testing Vulnerability scanners comparable to signature-based programs and most intrusion detection systems look presence of known vulnerabilities already discovered disclosed 	antivirus ing for the
 Vulnerability discovery means generating hypotheses potential vulnerabilities and testing for those vulnerabili determine which hypotheses are correct 	
Reporting those newly-discovered vulnerabilities an int topic, but outside the focus of this presentation	eresting

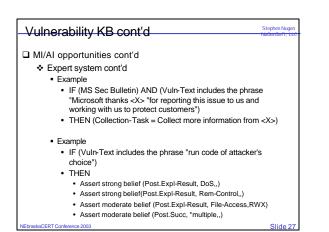


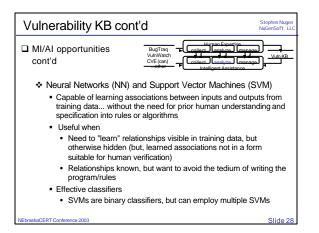


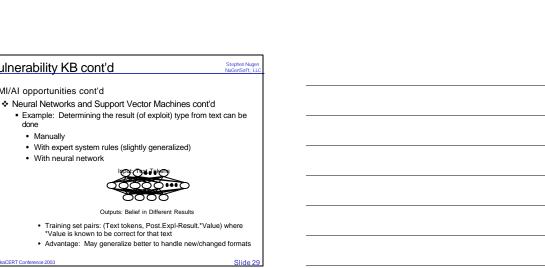
Vulnerability KB	Stephen Nugen NuGenSoft, LLC
 Content Known, reported, vulnerabilities and exploits Example Preconditions Access Type (e.g., External, Internal, Inserted) Privilege Level (e.g., Anonymous, Auth-User, Root) Operating Environment (e.g., Vendor, Software version, etc.) Predecessors (for chained exploits) Operations Exploit Method (e.g., Malformed Input, Impersonation, etc.) Known Exploits (the messy details) Comments (e.g., weakness associated with vulnerability, when announced/mitigated, etc.) 	
NEbraskaCERT Conference 2003	Slide 20











Vulnerability KB cont'd MI/AI opportunities cont'd

With neural network

done Manually

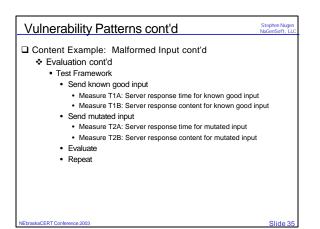
CERTO

Vulnerability Patterns	Stephen Nugen NuGenSoft, LLC
 Content Human expertise applied to Vuln KB, expressed as vulnerability patterns Common threads, etc. Can be applied to known vulnerabilities to generate plausible hypotheses about new vulnerabilities Circular referencing at first But, not when applied to different domains (e.g., vendor wanting to discover their own vulnerabilities) But, not for newlyannounced/discovered vulnerabilities 	Generate VulnExprine Cenerate Vuln Patterns Vuln Patterns Vuln Patterns Target Re Test Test Test Test Retring Potential Vuln Evaluate
 Includes Indicators: How applicable is this pattern to the new doma or newly announced/discovered vulnerability? Mutations: How can known vulnerability be mutated 	in
Evaluation: How to test, evaluate test outcomes NEbraskaCERT Conference 2003	Slide 30

0000... 0000

Vulnerability Patterns cont'd	Stephen Nugen NuGenSoft, LLC
Content Example: Malformed Input	
Indicators	
 Absolute negative 	
 Num-Input-Vectors < 1 	
Strong negative	
Pre.Priv = Root	
 Weak positive 	
 Num-Input-Vectors > 0 	
 Pre.Access = External or Internal 	
 Pre.Priv = Anonymous or Auth-User 	
 Pre.Predecessors = <any></any> 	
 Strong positive 	
 Num-Input-Vectors > 1 	
 Pre.Access = External 	
 Pre.Priv = Anonymous 	
 Pre.Predecessors = <null></null> 	
NEbraskaCERT Conference 2003	Slide 31

Vulnerability Patterns cont'd	Stephen Nugen NuGenSoft, LLC
Content Example: Malformed Input	
✤ Indicators	
Absolute negative: Num-Input-Vectors < 1	
Strong negative: Pre.Priv = Root	
 Weak positive 	
 Num-Input-Vectors > 0 	
 Pre.Access = External or Internal 	
 Pre.Priv = Anonymous or Auth-User 	
 Pre.Predecessors = <any></any> 	
 Strong positive 	
 Num-Input-Vectors > 2 	
 Client-side validation present 	
 Pre.Access = External 	
 Pre.Priv = Anonymous 	
 Pre.Predecessors = <null></null> 	
NEbraskaCERT Conference 2003	Slide 32

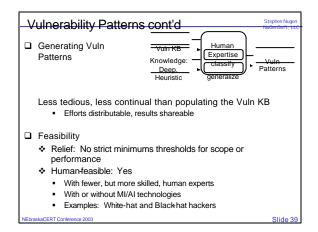

Vulnerability Patterns cont'd	Stephen Nugen NuGenSoft, LLC
Content Example: Malformed Input cont'd	
 Mutations 	
 Vary length (e.g., from zero to 2049 bytes) 	
 Vary type (text, numeric, special characters, etc.) 	
 Vary encoding (ASCII, Unicode, single-encode, do 	ouble-encode, etc.)
 Insert special values (null, quote marks, reserved of 	device name, etc.)
 Evaluation 	
 Test Environment 	

Slide 33

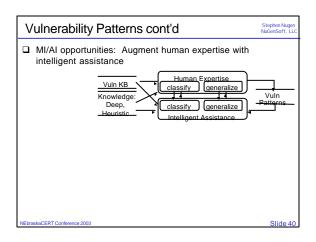
- Server: target, optional instrumentation
- Client: w/o client-side validation, instrumentedNetwork: optional monitoring

NEbraskaCERT Conference 2003

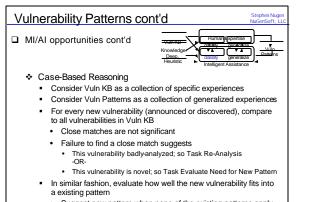
Vulnerability Patterns cont'd	Stephen Nugen NuGenSoft, LLC
 Content Example: Malformed Input cont'd Evaluation cont'd Baseline Measurements Send known good input Measure E1A: Server response time for known good inp Measure E1A: Server response content for known good Send known legal bad input Measure E2A: Server response time for known legal bac Measure E2B: Server response content for known legal bac 	input 1 input
NEbraskaCERT Conference 2003	Slide 34

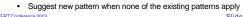


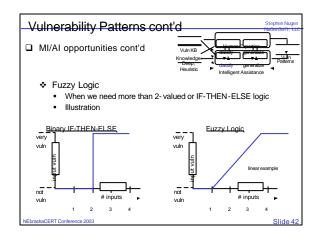
Vulnerability Patterns cont'd	Stephen Nugen NuGenSoft, LLC
 Content Example: Malformed Input cont'd Evaluation cont'd Test-Interpretation-1 (Discover full DoS due to server IF (T1A = timeout) - no response from server to goo OR (T2A = timeout) - no response from server to r THEN 	od input
 Assert strong belief (Post.Expl-Result, Full-DoS,,) -Note: This is not an assertion about a vulnerabilit discovered and in the Vuln KB, but rather a forecas the target system that stops responding after it recur inputs Assert potential belief (Post.Expl-Result,Buffer-Ove Alert-Task = Check server: register values 	t assertion a bout eives mutated
Alert-Task = Restart server	
NEbraskaCERT Conference 2003	Slide 36

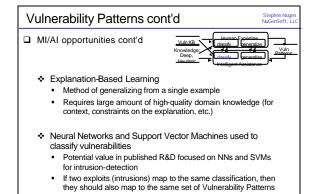

Vulnerability Patterns cont'd	Stephen Nugen NuGenSoft, LLC
 □ Content Example: Malformed Input cont'd ◆ Evaluation cont'd • Test-Interpretation-2 (Discover partial DoS due to Server error/exception processing) • IF • (T1A >> E1A) - server has slowed down, even for good in • OR (T2A >> E2A) - server responds slower to mutated ing • THEN 	
NEbraskaCERT Conference 2003	Slide 37

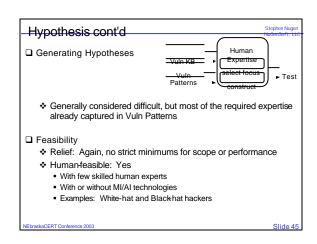
Vulnerability Patterns cont'd	Stephen Nugen NuGenSoft, LLC
Content Example: Partial DoS -> Full DoS	
 Indicators 	
 Absolute negative 	
 (Belief (Post.Expl-Result, Partial-DoS,,) < unknown) 	
 Strong negative 	
 (Belief (Post.Expl-Result, Partial-DoS,,) = unknown) 	
 Weak positive 	
 Belief (Post.Expl-Result, Partial-DoS,) > unknown 	
 Strong positive 	
 Belief (Post.Expl-Result, Partial-DoS,,) > weak 	
✤ Mutations	
 Vary single-client volume (just blast, without waiting for re 	• •
 Vary number of clients (use multiple clients for discover D 	DoS)
Evaluation similar to previous example	

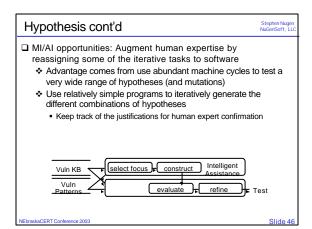

Slide 38




CERT Confe








Slide 4

kaCERT Conference 2003

Hypothesis	Stephen Nugen NuGenSoft, LLC
 Content Hypotheses are plausible guesses that can be evaluated, preferably via automatic tests Example: Web Application "A" potentially vulnerable to Malformed inputs Justification.Value = Value(Vuln-Patterns.Malformed Input.Indicators) Evaluation.Pattern = Pattern(Vuln-Patterns.Evaluate) 	Candinate Volde Kol KB Candinate Volde Kol KB Candinate Volge Ebitions Volge Ebitions Volge Ebitions Volge Ebitions
 Example: Web Application "A" potentially vulnerable to Information disclosure Justification.Value = Value(Vuln-Patterns.Applic-Authentication.Indicators) App does non-encrypted Post of password paramete Evaluation.Pattern = Pattern(Vuln-Patterns.Evaluate) LAN sniffer NebreskaCERC Conference 2003 	Potential July Evaluate

Target KB	Stephen Nugen NuGenSoft, LLC
 Content Meta-knowledge describing the environment vulnerability discovery is focused on Example Target Attributes IP address, URLs, Post Form parameters Constraints 	
Feasible: Yes, low-risk NEtrestaCERT Conference 2003	Slide 47

Test	Stephen Nugen
 Content For each Hypothesis, generate test cases that reflect all or a significant subset of all possible mutations as defined in the applicable Vuln Pattern Example for one Hypothesis Assume Known good input: "A" Mutation-Method-1: Vary input-1 length: [1 - 1025] Mutation-Method-2: Insert special characters: [<null>, <%>, <', <>]</null> Test-1: Input = "A" Test-1025: Input = "A.A." Test-1026 = <null></null> Test-1026 = <null></null> A" (1025 bytes) Test-1027 = "A< 	VuiderSoft LCC Generate Vuidersping Generate hypotheses hypotheses hargerts rangerts rest rest volumes Periodical Evaluate
NEbraskaCERT Conference 2003	Slide 48

Test cont'd	Stephen Nugen NuGenSoft, LLC
Generating Tests	
 Define test cases from iteration of mutation methods Vuln Pattern 	defined in
 Add necessary scripts and wrappers to execute and the response to each test case 	measure
 Specific to target platform (Target KB) 	
 Specific to test tool(s) 	
Potentially boring, but not complex	
General Feasible: Yes	
Scripts and automated tools readily available	
MI/AI techniques not required	
NEbraskaCERT Conference 2003	Slide 49

Back to Claim-C

Stephen Nuger

Slide 50

Slide 51

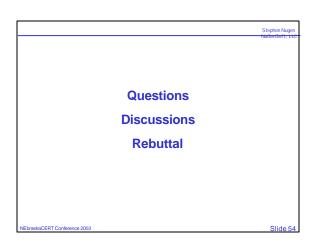
Confidence in Claim-C

- MI/AI techniques can and will be used to assist in the discovery of new vulnerabilities in commercial and custom software
- Presenter's viewpoint: Claim -C shown feasible because all the required components shown feasible
- Commercial example: eeye (based on public web pages)
 Retina vulnerability scanner is two-part
 - Part-1: Signature-based vulnerability scanner
 - Fast
 - · Relatively simple to use
 - Part-2: CHAM... operates like a "hackling-consultant" simulating the methods a hacker would likely use
 - Not fast
 - · More difficult to use

NEbraskaCERT Conference 2003

FRTO

Stephen Nuge Back to Claim-C cont'd Confidence in Claim-C cont'd ✤ Commercial example: eeye cont'd Retina cont'd · CHAM cont'd "Intelligently seeks to compromise target machines" to discover vulnerabilities not found otherwise, including vulnerabilities in custom applications Currently targets HTTP, FTP, SMTP, and POP3 protocols Audit target services for buffer overflows by sending malformed data Newly discovered vulnerabilities in commercial software can be submitted to eeye's vulnerability research team... they will confirm and contact the vendor · Eeye credits use of their automated testing tool in the discovery of announced vulnerabilities • Same tool used to discover vulnerabilities in Internet Explorer, Shockwave, MSN Chat, and PNG


Part-3: Summary Observations	Stephen Nugen NuGenSoft, LLC
I. MI/AI techniques can and will be used to discover a vulnerabilities faster	new
 2. The results of #1 can and probably will be used maliciously, increasing the speed at which attacks ev Widespread acceptance not required, just a few will do Commercial grade tools not required 	
 3. The results of #1 can be used proactively by organ to discover vulnerabilities in their software and remedi them before they are exploited Widespread acceptance unlikely Commercial tools required 	
NEbraskaCERT Conference 2003	Slide 52

Summary Observations cont'd Number Name Number State State

The subject of most published research regarding MI/AI for InfoSec

Slide 53

aCERT Conference 2003

