

LAMP Secure Web Hosting

A.J. Newmaster & Matt Payne
8/10/2005

How do I lock down my server?

&

How can I use mod_security?

ModSecurity is an open
source intrusion detection
and prevention engine for
web applications. Operating
as an Apache Web server
module, the purpose of
ModSecurity is to increase
web application security,
protecting web applications
from known and unknown
attacks.

How can I use mod_security?

Introducing mod_security

Running public web applications may seem like playing
Russian roulette. Although achieving robust security on the
Web is possible in theory, there's always a weak link in real
life. It only takes one slip of the code to allow attackers
unrestricted access to your data. If you have a public web
application of modest complexity running, chances are good
that is has some kind of security problem.

How can I use mod_security?

Introducing mod_security

ModSecurity integrates with the web server, increasing your
power to deal with web attacks. Some of its features worth
mentioning are:

3. Request filtering
4. Anti-evasion techniques
5. Understanding of the HTTP protocol
6. POST payload analysis
7. Audit logging
8. HTTPS filtering

How can I use mod_security?

Introducing mod_security

1. Request filtering

incoming requests are analyzed as they come in, and before
they get handled by the web server or other modules.

2. Anti-evasion techniques

paths and parameters are normalized before analysis takes
place in order to fight evasion techniques.

How can I use mod_security?

Introducing mod_security

3. Understanding of the HTTP protocol

since the engine understands HTTP, it performs very specific
and fine granulated filtering.

4. POST payload analysis

the engine will intercept the contents transmitted using the
POST method, too.

How can I use mod_security?

Introducing mod_security

5. Audit logging

full details of every request (including POST) can be logged
for later analysis.

6. HTTPS filtering

since the engine is embedded in the web server, it gets
access to request data after decryption takes place.

How can I use mod_security?

Introducing mod_security

Let’s look at the following example URL:

http://www.samplesite.abc/login.php?username=admin';
DROP%20TABLE%20users--

If your application is vulnerable to SQL injection, invoking
the URL above may very well delete all user data from your
application.

Did you make regular database backups?

How can I use mod_security?

Introducing mod_security

Fortunately, the mod_security Apache module can protect
you from this and other forms of web attacks.

To prevent the "drop table" SQL injection attack with
mod_security, add the following to your Apache
configuration:

SecFilter "drop[[:space:]]table"

How can I use mod_security?

Installing mod_security

http://www.modsecurity.org/download/

When installing from source you have two choices: to install
the module into the web server itself, or to compile
mod_security into a dynamic shared object (DSO).

http://www.modsecurity.org/download/
http://www.modsecurity.org/download/
http://www.modsecurity.org/download/

How can I use mod_security?

Configuring mod_security

<IfModule mod_security.c>
 # Turn the filtering engine On or Off
 SecFilterEngine On
</IfModule>

Turning filtering on and off

Filtering engine is turned off by default. To use it, you need to
turn it on:

How can I use mod_security?

Configuring mod_security

Turning filtering on and off

Supported parameter values for this parameter are:

–On – analyze every request
–Off – do nothing
–DynamicOnly

How can I use mod_security?

Configuring mod_security

Turning filtering on and off

DynamicOnly – analyze only requests generated dynamically
at runtime. Using this option will prevent your web server
from using precious CPU cycles on checking access to
static files.

How can I use mod_security?

Logging mod_security

Standard Apache logging will not help much if you need to
trace back steps of a particular user or an attacker. The
problem is that only a very small subset of each request is
written to a log file. This problem can be remedied with the
audit logging feature of mod_security.

How can I use mod_security?

Logging mod_security

Use the following 2 directives:

SecAuditEngine On
SecAuditLog /var/log/modsecure/audit_log

How can I use mod_security?

Logging mod_security

The SecAuditEngine parameter accepts one of four values:

3. On – log all requests
4. Off – do not log requests at all
5. RelevantOnly – only log relevant requests. Relevant

requests are those requests that caused a filter match.
6. DynamicOrRelevant – log dynamically generated or

relevant requests. A request is considered dynamic if its
handler is not null.

How can I use mod_security?

URL Encoding validation

Special characters need to be encoded before they can be
transmitted in the URL. Any character can be replaced using
the three character combination %XY, where XY is an
hexadecimal character code. Hexadecimal numbers only
allow letters A to F, but attackers sometimes use other letters
in order to trick the decoding algorithm. Mod_security
checks all supplied encodings in order to verify they are
valid.

How can I use mod_security?

URL Encoding validation

Turn URL encoding validation on with the following line:

SecFilterCheckURLEncoding On

How can I use mod_security?

Unicode encoding validation

Unicode encoding validation is disabled by default. You
should turn it on if your application or the underlying
operating system accept/understand Unicode.

You can turn Unicode encoding on with the following line:

SecFilterCheckUnicodeEncoding On

How can I use mod_security?

Byte range check

You can force requests to consist only of bytes from a
certain byte range. This can be useful to avoid stack
overflow attacks (since they usually contain "random"
binary content).

SecFilterForceByteRange 32 126

This however is causing problems, since it only allows
characters from ascii code 32 to 162 (obviously).

How can I use mod_security?

Byte range check

Request: 62.131.150.160 - - [23/Sep/2004:14:46:08 +0200] "GET
/fo/curator.php?achternaam=&check%5Bmaatschapsnaam%5D=on&maatschapsnaam
=Dani%EBls+Dijkman+%26+Huisman+Advocaten&plaats=&submit=zoeken
HTTP/1.1" 407 492

Dani%EBls = Daniëls

character ë (ascii 137) is used in the request, and translated
to hex EB, ascii 235.

Result, false positive.

How can I use mod_security?

Default action

Whenever a filter is matched against a request, an action (or
a series of actions) is taken. Individual filters can each have
their own actions but in practice you will want to define a set
of actions for all filters. You can do this with the
configuration directive SecFilterDefatultAction.

SecFilterDefaultAction "deny,log,status:500“

How can I use mod_security?

Allowing others to see mod_security

Normally, attackers won't be able to tell whether your web
server is running mod_security or not. You can give yourself
away by sending specific messages, or by using unusual
HTTP codes (e.g. 406 - Not Acceptable “encoding”). If you
want to stay hidden your best bet is to use HTTP 500, which
stands for "Internal Server Error". Attackers that encounter
such a response might think that your application has
crashed.

How can I use mod_security?

Allowing others to see mod_security

One technique that often helps slow down and confuse
attackers is the web server identity switch. Web servers
typically send their identity with every HTTP response in the
Server: header. Apache is particularly helpful here, not only
sending its name and full version by default, but it also
allows server modules to append their versions too.

How can I use mod_security?

Allowing others to see mod_security

Mod_security offers a directive that will mask the identity of
you Apache web server:

SecServerSignature “ApacheCon 2004 Las Vegas“

You will need to set Server Tokens to Full in the httpd.conf
file, for this mod_security directive to work.

How can I use mod_security?

Directory traversal

If your scripts are dealing with the file system then you need
to pay attention to certain meta characters and constructs.
For example, a character combination "../" in a path is a
request to go up one directory level. In normal operation
there is no need for this character combination to occur in
requests and you can forbid them with the following filter:

SecFilter "\.\./"

How can I use mod_security?

Directory traversal

Audit log entry for the SecFilter "\.\./“ rule

Request: 213.136.105.146 - - [25/Sep/2004:11:47:34 +0200] "GET
/scripts/..%255c%255c../winnt/system32/cmd.exe?/c+dir" 405 0
Handler: (null)
--
GET /scripts/..%255c%255c../winnt/system32/cmd.exe?/c+dir
mod_security-message: Access denied with code 405. Pattern match "\.\./"
at THE_REQUEST.
mod_security-action: 405

How can I use mod_security?

Cross site scripting attacks

Cross site scripting attacks (XSS) occur when an attacker
injects HTML and/or Javascript code into your Web pages
and then that code gets executed by other users. This is
usually done by adding HTML to places where you would not
expect them. A successful XSS attack can result in the
attacker obtaining the cookie of your session and gaining full
access to the application!

SecFilter "<[[:space:]]*script“
SecFilter "<.+>"

How can I use mod_security?

Cross site scripting attacks

SecFilter "<[[:space:]]*script“

The above filter will protect only against Javascript injection
with the "<script>" tag.

SecFilter "<.+>“

This second filter is more general, and disallows any HTML
code in parameters.

How can I use mod_security?

Cross site scripting attacks

You need to be careful when applying filters like this since
many application want HTML in parameters (e.g. CMS
applications, forums, etc). You can do this with selective
filtering. For example, you can have the second filter from
above

SecFilter "<.+>“

as a general site wide rule, but later relax rules for a
particular script with the following code:

How can I use mod_security?

Cross site scripting attacks

<Location /cms/article-update.php>
SecFilterInheritance Off
other filters here ...
SecFilterSelective "ARGS|!ARG_body" "<(.|\n)+>“

</Location>

How can I use mod_security?

Cross site scripting attacks

GET /phpinfo.php?SERVER_ADDR="><script>alert('test');</script> HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-
shockwave-flash, application/vnd.ms-excel, application/vnd.ms-powerpoint,
application/msword, */*

mod_security-message: Access denied with code 405.
Pattern match "<(|\n)*script" at THE_REQUEST

Vulnerable XSS site.

Vulnerable XSS site with mod_security.

xss.wmv
xssprotected.wmv
xssprotected.wmv
xssprotected.wmv

How can I use mod_security?

SQL/database attacks

Most Web applications nowadays rely heavily on databases
for data manipulation. Unless great care is taken to perform
database access safely, an attacker can inject arbitrary SQL
commands directly into the database. This can result in the
attacker reading sensitive data, changing it, or even deleting
it from the database altogether.

How can I use mod_security?

Redirect

The following rule sends Google back home by redirecting
Googlebot somewhere else, based on the User-Agent
header. It does not log rule matches.

SecFilter HTTP_USER_AGENT "Google"
nolog,redirect:http://www.google.com

How can I use mod_security?

Operating system command execution

Web applications are sometimes written to execute operating
system commands to perform operations. A persistent attacker
may find a hole in the concept, allowing him to execute arbitrary
commands on the system.

A filter like this:

SecFilterSelective THE_REQUEST "bin/“

will detect attempts to execute binaries residing in various
folders on a Unix-related operating system.

How can I use mod_security?

Supporting Snort rules

Snort classifies rules into web attacks and web activities.
Web attack rules are converted to reject incoming requests,
while web activity rules only log the activity into the error log.

Mod_Security

Daily routine

– Review logwatch output to see if anyone is trying to FTP or
SSH into the system who should not have access. Block them
out in your firewall.

– Review chkrootkit and rootkit hunter output to see if your
system has been compromised with a rootkit.

– Review firewall logs and port scan logs to see if anyone is
attacking your servers. Block them out in your firewall.

http://www.chkrootkit.org/

 http://www.rootkit.nl/ NOTICE!! .nl

http://www.chkrootkit.org/
http://www.chkrootkit.org/
http://www.chkrootkit.org/
http://www.chkrootkit.org/
http://www.chkrootkit.org/
http://www.rootkit.nl/
http://www.rootkit.nl/
http://www.rootkit.nl/

Mod_Security

Daily routine

– Change your root password or any root equivalent password
on a regular basis.

– Review your system log files on a regular basis looking for
errors and suspicious activity.

– Regularly review new technologies that are available for
helping with security.

Mod_Security

Conclusion

Mod_security is a powerful tool, but can be overwhelming at
first. Start with some simple rules, and plan your rules ahead.

In a shared hosting environment it’s difficult to apply system
wide rules, since you have no control over the way your
users and customers program.

In a closed environment, like a intranet, all users will need to
adhere to rules and policies

Mod_Security

Acknowledgement

Mod_security is created and maintained by Ivan Ristic from
England. He has currently written a book called “Apache
Security” by O'Reilly.

Mod_security home page is located at:

http://www.modsecurity.org

***The previous slides have been borrowed from the Apachecon
2004 Conference in Las Vegas and edited for this presentation***

http://www.modsecurity.org/
http://www.modsecurity.org/

Chroot Jails
Putting Apache in a Chroot jail is quite time consuming
and at times a tedious task (not to mention extremely
boring!). The problem is that applications typically require
shared libraries, and various other files and binaries to
function properly. So, to make them function you must
make copies of required files and make them available
inside the jail. Mod_Security can make this a simple
process by adding:

 SecChrootDir /chroot/apache
In the configuration directory. If you don’t want to do it
this way, there is another tool that will help make
chrooting easy…Jailkit. (But first an explanation on a
chroot jail)

/

bin usr var home

user1 user2chroot

bin usr var home

user1 user2

chroot

bin usr var home

user1 user2

Chroot User Environment

/home/chroot root user,
root to the chroot user

“Jailkit is a set of utilities to limit user accounts to specific files using
chroot() and or specific commands. Setting up a chroot shell, a shell
limited to some specific command, or a daemon inside a chroot jail is a
lot easier using these utilities.
Jailkit is often used on CVS servers (in a chroot and limited to cvs),
sftp/scp servers (both in a chroot and limited to sftp/scp as well as not in
a chroot but only limited to sftp/scp), and also on general servers with
accounts where the shell accounts are in a chroot. Jailkit is furthermore
used to jail daemon processes, for example apache servers, bzflag
servers, squid proxy servers, etc.”

http://olivier.sessink.nl/jailkit/jk_lsh.8.html

or

http://tinyurl.com/bgysq

A standard jail can be made in under 5 minutes with Jailkit.

http://olivier.sessink.nl/jailkit/jk_lsh.8.html
chroot.wmv
chroot.wmv
chroot.wmv

Mod_proxy

• This module implements a proxy/cache for
Apache. It implements proxying capability
for FTP, CONNECT (for SSL), HTTP/0.9,
and HTTP/1.0. The module can be
configured to connect to other proxy
modules for these and other protocols.

Linux Apache Server: domainname.com

Software
Firewall

Port 80

 /foo

/bar

Web Request:

domainname.com/bar

Web Request:

domainname.com/foo

Host A

Host B

Port 7000

Port 8000

Linux Apache Server: domainname.com

Software
Firewall

Port 80

 /foo

/bar

Web Request:

domainname.com/bar

Web Request:

domainname.com/foo

Host A

Host B

Port 7000

Port 8000

Linux Apache Server: domainname.com

Software
Firewall

Port 80

 /foo

/bar

Web Request:

domainname.com/bar

Web Request:

domainname.com/foo

mod_proxy
enabled as
ReverseProxy

Host A

Host B

Port 7000

Port 8000

Linux Apache Server: domainname.com

Software
Firewall

Port 80

 /foo

/bar

Web Request:

domainname.com/bar

Web Request:

domainname.com/foo

Host A

Host B

Port 7000

Port 8000

Linux Apache Server: domainname.com

Software
Firewall

Port 80

 /foo

/bar

Web Request:

domainname.com/bar

Web Request:

domainname.com/foo

Host A

Host B

Host A directed to /bar

Host B directed to /foo

Port 7000

Port 8000

Linux Apache Server: domainname.com

Software
Firewall

Port 80

 /foo

/bar

Web Request:

domainname.com/bar

Web Request:

domainname.com/foo

Host A

Host B

Two domain names could be used for the apache
server and directed towards the correct web
server with mod_proxy.

Port 7000

Port 8000

Linux Apache Server: Registered foo.com & bar.com

Software
Firewall

Port 80

 bar.com

foo.com

Web Request:

foo.com

Web Request:

bar.com

Host A

Host B

Host A directed to foo.com

Host B directed to bar.com

Port 7000

Port 8000

Linux Apache Server: Registered foo.com & bar.com

Software
Firewall

Port 80

 bar.com

foo.com

Web Request:

foo.com

Web Request:

bar.com

Host A

Host B

Port 7000

Port 8000

Now lets think about both of the Apache servers
in chroot jails.

foo.com
Port 8000

bar.com
Port 7000

If malicious code is put into
bar.com, it will be

contained and foo.com will
not be affected.

The same goes for
foo.com. Everything in it

is contained.

Also, if one of the servers is compromised from outside, they
cannot get access to the other server or the system files,
therefore, they basically pulled the wrong chance card…

foo.com
Port 8000

bar.com
Port 7000

Lets go a little further and put both
servers in an Encrypted File System,
or EncFS, with FUSE (Filesystem in

User Space)

foo.com
Port 8000

bar.com
Port 7000

seswaspAfaCh
us!$tanE-r+5-

Kethe*espaja=+
gaqU!+yuJucru
?Ra#pufebUt@t
aja8ac9br8refra
yaru6uf=wU7a
w2aw!dra4ew2
8cre2etucredez

seswaspAfaCh
us!$tanE-r+5-
Kethe*espaja=
+gaqU!+yuJuc
ru?Ra#pufebU
t@taja8ac9br8r
efrayaru6uf=w
U7aw2aw!dra4
ew28cre2etucr

edez

seswaspAfaChu
s!$tanE-r+5-

Kethe*espaja=+g
aqU!+yuJucru?R
a#pufebUt@taja8
ac9br8refrayaru6
uf=wU7aw2aw!dr
a4ew28cre2etucr

edez

seswaspAfaC
hus!$tanE-

r+5-
Kethe*espaja=
+gaqU!+yuJuc
ru?Ra#pufeb
Ut@taja8ac9b
r8refrayaru6uf
=wU7aw2aw!d
ra4ew28cre2e

seswaspAfaChu
s!$tanE-r+5-

Kethe*espaja=+g
aqU!+yuJucru?R
a#pufebUt@taja8
ac9br8refrayaru6
uf=wU7aw2aw!dr
a4ew28cre2etucr

edez

seswaspAfaCh
us!$tanE-r+5-

Kethe*espaja=+
gaqU!+yuJucru
?Ra#pufebUt@t
aja8ac9br8refra
yaru6uf=wU7a
w2aw!dra4ew2
8cre2etucredez

seswaspAfaCh
us!$tanE-r+5-

Kethe*espaja=+
gaqU!+yuJucru
?Ra#pufebUt@t
aja8ac9br8refra
yaru6uf=wU7a
w2aw!dra4ew2
8cre2etucredez

seswaspAfaChu
s!$tanE-r+5-

Kethe*espaja=+g
aqU!+yuJucru?R
a#pufebUt@taja8
ac9br8refrayaru6
uf=wU7aw2aw!dr
a4ew28cre3fda8
0943qffjdas;!*(S

Fdasl;vn3849q0
meaw90438ffnu
430fq8ew9043e
8m09qf84nqg09
43qty8ehfewp9
a8fn4q0fenbdp
9af843yf09ean8
eaw09fh48aqpn
ea9f0438hqfean

98e0ahf3

With EncFS and FUSE, you are able to
see the original file sizes, but that is all.
Everything else, including the filenames,

are encrypted.

foo.com
Port 8000

bar.com
Port 7000

EncFS and Fuse have the ability decrypt
one or both of the servers on-the-fly if you

have the correct password.

Linux Apache Server: Registered foo.com & bar.com

Software
Firewall

Port 80

 bar.com

foo.com

Web Request:

foo.com

Web Request:

bar.com

Host A

Host B

Port 7000

Port 8000

Fkjlda;sfjdaf0i43qr73
(&$^#HC789H#(*#Hc8
703fj(8f09NC:cmx*#8f
09dafdjk:Lv*#)fdokja
pf4398q0fjeaf;ldakfj4
098qrnueir209t84qnu
p80^)($YNdPO(*RY#
Q()NshnOSF*&#R)(6*

)#QY$)!@(EY
W)(*DWR)(#qRB98)W
&EWQ*E)(WQDNSDN
sjCLKsncu3iorhd90w
098dw6r09HSJLKD3
EH091`70`9h!()*h$wh

daslkfhawr(*@#q)r

Fkjlda;sfjdaf0i43qr73
(&$^#HC789H#(*#Hc8
703fj(8f09NC:cmx*#8f
09dafdjk:Lv*#)fdokja
pf4398q0fjeaf;ldakfj4
098qrnueir209t84qnu
p80^)($YNdPO(*RY#
Q()NshnOSF*&#R)(6*

)#QY$)!@(EY
W)(*DWR)(#qRB98)W
&EWQ*E)(WQDNSDN
sjCLKsncu3iorhd90w
098dw6r09HSJLKD3
EH091`70`9h!()*h$wh
daslkfhawr(*@#q)r

FDSUA90F84327Q
0F9HLKJADANVJ
43OIT843Q09N837
5094325NVOi)(*&)
#n%v#(*)r&n#*)(v*
n#&)(#rnv#)(*r#@)(
^%#@(4^#)(*r#()%
^#2rdfjldsjflky%@#
(*)HFLKJDFoip%)(
fjdoifAP8R0hf#()
N43po*y)(fheFpo#f
*e)(fehr#w)(rhfheioe

p(#r#Y

FG4W

Our final result: Mod_Security, Chroot Jail, and EncFS with Fuse.

Mod_Security

