
Java Security
By Matt Payne, CISSP

Derived from Wheeler’s GPLed slides
tinyurl.com/eyrjl

CertConf.org
Wednesday, August 10th, 10:30 AM

Level: Beginner
Slides are at MattPayne.org/talks

August 12, 2005 (C) 1999-2000 David A. Wheeler 2

Three Big Mechanisms

• JVM Security Manager
• Dynamic Proxies – Started with Java 1.3
• Servlet Container’s Filter Idea

– EG:
• JCaptcha.SF.net

August 12, 2005 (C) 1999-2000 David A. Wheeler 3

Basic Servlet Roles

• RoleAndAuthDemo with servlets
• request.isUserInRole(role)

– Roles are defined in the web.xml
– Accounts to role mapping is defined in server specific

configuration file.
• Relies on source code and configuration.

August 12, 2005 (C) 1999-2000 David A. Wheeler 4

Shocking!

• System.exit(0) in a servlet or JSP will take down
your java based web server!
– Because (frequently) there is not a security policy in

effect by default.
– NUCIA students recently confirmed this with these

java based web servers:
• Tomcat
• IBM’s WAS
• BEA’s Weblogic

August 12, 2005 (C) 1999-2000 David A. Wheeler 5

• Hacking J2EE & Java
Exposed

• ISBN: 0072225653
paperback 426 pages
Published in Sep 2002 by
McGraw Hill
Author: Art Taylor, Brian
Buege, Randy Layman

http://www.elx.com.au/?elx=aa23ab59c0348328f6d2b478b5cf1006
http://www.elx.com.au/images/products/full/OS5653.jpg?elx=aa23ab59c0348328f6d2b478b5cf1006

August 12, 2005 (C) 1999-2000 David A. Wheeler 6

• Inside Java 2 Platform
Security, Second Edition:
Architecture, API Design
and Implementation

• by Li Gong, Gary Ellison
and Mary Dageforde
September 2003

http://print.google.com/print?id=XfWlYWVzo20C&lpg=1&dq=Inside+Java+2+Platform+Security&prev=http://www.google.com/search%3Fhl%3Den%26hs%3Dv46%26client%3Dfirefox-a%26rls%3Dorg.mozilla:en-US:official%26q%3DInside%2BJava%2B2%2BPlatform%2BSecurity%26spell%3D1&pg=0_1&printsec=0&sig=GAnXH-cIDiQbuVItkgLAl9e5skw
http://print.google.com/print?id=XfWlYWVzo20C&lpg=1&dq=Inside+Java+2+Platform+Security&prev=http://www.google.com/search%3Fhl%3Den%26hs%3Dv46%26client%3Dfirefox-a%26rls%3Dorg.mozilla:en-US:official%26q%3DInside%2BJava%2B2%2BPlatform%2BSecurity%26spell%3D1&pg=0_1&printsec=0&sig=GAnXH-cIDiQbuVItkgLAl9e5skw

August 12, 2005 (C) 1999-2000 David A. Wheeler 7

Type Safety

• Type safety in the Java language prevents the
following attack vectors
– Buffer overflows and Data access violations

• The type safety mechanism in the Java language
prevents stack and buffer overflow attacks and
also ensures data is accessed in a type-safe and
compatible way. Execution of malicious code is
generally thwarted by the bytecode verifier.

August 12, 2005 (C) 1999-2000 David A. Wheeler 8

Class Loaders

• The type of a class is specified by its fully
qualified class name and its defining class loader.

• The type of a class is a combination of the fully
qualified class name and the defining class loader.
That is to say that two classes with the same fully
qualified name but which are defined by different
instances of a class loader are not of the same
type.

August 12, 2005 (C) 1999-2000 David A. Wheeler 9

Policy
• Security policy enforcement may be performed by the

installed instance of the java.lang.SecurityManager class
and the java.security.AccessController class.
Both the SecurityManager and the AccessController can
implement logic to enforce access control. The default
implementation of SecurityManager delegates this to the
AccessController. However this is not required of a custom
SecurityManager implementation. Note that the
AccessController delegates to the installed Policy provider
for evaluation of the requisite permissions to be granted to
the ProtectionDomains of the current
AccessControlContext.

August 12, 2005 (C) 1999-2000 David A. Wheeler 10

Friends?

• tinyurl.com/crnkw JavaWorld tip on
simulating C++ friend access with Java

• A class is allowed access to package private
(a.k.a. default access) members of another class

• If both classes are in the same package and
defined by the same class loader.

August 12, 2005 (C) 1999-2000 David A. Wheeler 11

Outline

• Java Basics
– What’s Java, Modes of Use, major components,

implications, implementations, politics
• Security-related capabilities (JDK 1.0, 1.1, “1.2”)
• Selected upcoming developments
• Miscellaneous

– Past breaches, malicious applets, advantages &
disadvantages, key points

August 12, 2005 (C) 1999-2000 David A. Wheeler 12

What’s Java?

• Java Technologies:
– Java language
– Virtual machine (VM)/class file format
– Libraries

• Can use only VM or language
• Developed by Sun
• Not related to “Javascript”
• Cross-Platform (WORA)

Compiler

Source code

Class files

Virtual Machine

Libraries U
se

r
D

ev
el

op
er

August 12, 2005 (C) 1999-2000 David A. Wheeler 13

Javascript liveconnect

• What it is
• How to do it
• Security implications?

August 12, 2005 (C) 1999-2000 David A. Wheeler 14

Java Modes of Use

• Applets: Auto-run when view web page
• Applications: Traditional program (performance?)
• Beans: Component (like OLE object)

– POJO – Plain Old Java Object
• Servlets: Server-side applications

– JSP – Java Server Pages – compile into servlets
• EJB – Enterprise Java Beans

– Not POJOs

August 12, 2005 (C) 1999-2000 David A. Wheeler 15

Java Language

• Modern object-oriented (OO) language
– OO with single inheritance + multiple “interfaces”
– Classes grouped into hierarchical packages
– Strong static typing (no arbitrary pointers)
– Automatic garbage collection
– Exceptions
– Multithreaded

• Lacks enumerations and templates (generics)
• Syntax ~C++, semantics ~Ada95/Smalltalk

August 12, 2005 (C) 1999-2000 David A. Wheeler 16

Java Virtual Machine (VM) and
Class File Format

• Class file defines names/types/values of class
variables, constants, & methods

• Methods stored as instructions to stack-based VM
– Very similar to UCSD p-code

• VM executes class files (inc. collections of them)
– By interpretation, run-time compilation, or

combination; performance is a significant issue
• Before execution, VM usually runs “bytecode

verifier” to check legality of class file

August 12, 2005 (C) 1999-2000 David A. Wheeler 17

Java Libraries

• Set of built-in APIs, including:
– GUIs
– Networking
– Computation

• Growth area
• Several classes are security-related

– This presentation will skim ordinary crypto functions
such as ones for encryption/decryption, certificate
management, etc., since they are not essentially unique

August 12, 2005 (C) 1999-2000 David A. Wheeler 18

Class and Method
Access Control Modifiers

Access Control
Modifier

Class or Interface
Accessibility

Member (Field or Method)
Accessibility

Public All All if class or interface is
accessible; interface members
always public

Protected N/A Same package OR subclass

“default”
(Package private)

Same package Same package

Private N/A Only same class (not
subclass)

August 12, 2005 (C) 1999-2000 David A. Wheeler 19

Bypassing Access Control

• By default, there is no security policy in effect.
• When no security policy is in effect….

– Reflection can be used to bypass access controls
– This is commonly used for unit testing

• Trust us – we’re programmers 
final Field fields[] = o.getClass().getDeclaredFields();
fields[i].setAccessible(true);
Reference: tinyurl.com/b2qud

August 12, 2005 (C) 1999-2000 David A. Wheeler 20

Implications of Java Basics

• No arbitrary pointers: references ~ capabilities
– Only creator & createe have reference for new object
– If objectset doesn’t pass a reference, you can’t

manipulate that object
• Can only manipulate objects in limited ways

– If data private, can only manipulate via methods
– Methods can be used to protect data
– Constructor method can limit who can create an object

• Software-enforced protection (small slips break it)

August 12, 2005 (C) 1999-2000 David A. Wheeler 21

Notes on Java Implementations

• “Java” is the general technology
• Multiple Java Implementations

– Sun, Microsoft (derived), Kaffe, …
– This presentation emphasizes Sun’s implementations
– Sun essentially controls the interface and reference

implementation
– Notes on IBM’s implementation

• Jikes

August 12, 2005 (C) 1999-2000 David A. Wheeler 22

Java: Caught in
Political Cross-fire

• Microsoft
– Intentionally “polluted” with incompatible unmarked

extensions to fool developers into unportable code
– Sun sued & won court injunction partly forbidding this

• Sun
– Promised to support standardization (they have before)
– Customers trusted Sun & committed major resources
– Sun flirted with ISO & ECMA, then halted cooperation
– Greatly angered users: “Sun lied”
– Linux port taken without warning or acknowledgement
– Suddenly charged royalties on enterprise edition, even

to those who had partially funded its development

August 12, 2005 (C) 1999-2000 David A. Wheeler 23

Java: 2000’s Political Situation
• Sun controls spec & primary implementation

– “Community” license means “Sun controls everything”
– Java is essentially Sun proprietary language/technology

• Disincentive for other organizations
– IBM, etc., don’t want to depend on a competitor
– Sole-source dangerous: surprise fees, nasty changes

• User best interests not in Sun/Microsoft interests
• To avoid total dependence on a capricious vendor:

– Consider open source, Linux, standardized languages

August 12, 2005 (C) 1999-2000 David A. Wheeler 24

Security-Related Capabilities
(1 of 2)

• JDK 1.0 (Fall 1995)

– Policy: “Sandbox” for applets; others unlimited
– Mechanisms: SecurityManager, Bytecode verifier,

Classloader
• JDK 1.1 (Spring 1997)

– Policy: can also grant total trust to signed applets
– Mechanisms: Java Archive (JAR), crypto-related APIs

• Inflexible: Too little or too much privilege

August 12, 2005 (C) 1999-2000 David A. Wheeler 25

Security-Related Capabilities
(2 of 2)

• Netscape & Microsoft Extensions
– Enabled more flexible approaches
– Incompatible with each other and with Sun

• J2SE (Java 2 Platform Standard Edition) (Fall 1998)

– Includes SDK 1.2 and runtime
– Policy: can also grant fine-grained privileges to specific

applets/classes based on source and/or signatures
– Mechanisms: AccessController, ProtectionDomain,

CodeSource, Permission, GuardedObject, …
– “Java Plug-in” supports both Microsoft & Netscape

August 12, 2005 (C) 1999-2000 David A. Wheeler 26

Java 1.0 Security Policy

• Sandbox Policy (for applets)
– Cannot access local filesystem or devices
– Network connections only to applet load source
– Cannot invoke any local program or library
– “Untrusted” indicator on top-level windows
– Cannot manipulate basic classes or another

ThreadGroup
– Appletviewer CL can be initialized to vary these

• Applications unlimited in 1.0; can code a policy

August 12, 2005 (C) 1999-2000 David A. Wheeler 27

SecurityManager

• Class defines check methods called by system
– E.G. “checkRead(String filename)”
– Method throws exception if invalid

• To create a security policy from scratch:
– Create a subclass (code) & instantiate
– Install using System.setSecurityManager; this cannot

be revoked or replaced
– This is used to create the Sandbox
– If no SecurityManager installed, all privileges granted

August 12, 2005 (C) 1999-2000 David A. Wheeler 28

Bytecode Verifier

• Checks a classfile for validity:
– Code only has valid instructions & register use
– Code does not overflow/underflow stack
– Does not convert data types illegally or forge pointers
– Accesses objects as correct type
– Method calls use correct number & types of arguments
– References to other classes use legal names

• Goal is to prevent access to underlying machine
– via forged pointers, crashes, undefined states

August 12, 2005 (C) 1999-2000 David A. Wheeler 29

Defeating Verifiers with Heat

• Volker’s article about how a light bulb can perturb
RAM enough to violate conditions the byte code
verifier was supposed to prevent.

• tinyurl.com/b24bm
• Remember – You can not test for the absence of

flaws.

August 12, 2005 (C) 1999-2000 David A. Wheeler 30

ClassLoader

• Responsible for loading classes
– given classname, locates/generates its definition
– always looks at “standard” classes first
– every class has a reference to the classloader instance

that defined it
– keeps namespaces of different applets separate

(different ClassLoader instances)
– each ClassLoader instance ~ OS process
– “CLASSPATH” classes trusted in JDK 1.0-1.1, system

classes trusted, otherwise invokes bytecode verifier

August 12, 2005 (C) 1999-2000 David A. Wheeler 31

Java Archive (JAR) Format (1.1)

• Format for collecting & optionally signing sets of
files
– ZIP format + manifest + optional signatures

• Manifest
– In file META-INF/MANIFEST.MF
– Lists (some) JAR filenames, digests, digest

algorithm(s) (MD5, SHA)
• Signatures

– Separate manifest-like file, separate signature

August 12, 2005 (C) 1999-2000 David A. Wheeler 32

Signed JAR files

• With Java Web Start
• Also may be used with traditional applications
• Trust hierarchy is like SSL certificates

August 12, 2005 (C) 1999-2000 David A. Wheeler 33

Sealed JAR files

• Sealing JAR files
• Why
• How
• Example – the BouncyCastle.org jars

August 12, 2005 (C) 1999-2000 David A. Wheeler 34

Java Cryptography Architecture
(Added in 1.1)

• Java cryptography architecture (JCA)
– Framework (API) for access to services implemented

by pluggable “providers”
– digital signature algorithms (DSA), message digest

algorithms (MD5 & SHA-1), key-generation
algorithms, simple certificate management (1.1 had no
API for specific formats)

– Simple key management tool (simple “database”)

August 12, 2005 (C) 1999-2000 David A. Wheeler 35

Problems with 1.0 through 1.1

• Sandbox too limiting
• “Trusted” programs given too much power
• Hard to define new security policy

– Must write own SecurityManager
– Must install it on its own JVM

• New privileges difficult to add
– New method must be added to SecurityManager
– Creates a backward incompatibility for each addition

August 12, 2005 (C) 1999-2000 David A. Wheeler 36

Security-Related Capabilities in
Java 2 (SDK 1.2)

• Fine-grained configurable policies
– Sample Security Policy
– Runtime State: ProtectionDomain/CodeSource/Policy
– Java 2 Runtime Security Check Algorithm
– Permission & Its Subclasses
– SecurityManager & AccessController
– GuardedObject & Guard

• Java Cryptography Architecture (JCA) changes
• Java Cryptography Extension (JCE)

August 12, 2005 (C) 1999-2000 David A. Wheeler 37

Sample Fine-Grained
Security Policy for One User
Source of Code (CodeSource)
Base URLSignature

Permissions

http://www.schwab.com/
classes/stockeditor.jar

Schwab’s signature • Read/write file
/home/daw/stocks

http://*.schwab.com/ (not required) • Connect/accept
bankofamerica.com
ports 1-1023
• Read file
/home/daw/logo.png

August 12, 2005 (C) 1999-2000 David A. Wheeler 38

Java 2: Each Class Has A
ProtectionDomain

Class1

ClassLoader1 Policy
Instance1 Instance2

Class2

ProtectionDomain1
PermissionCollection
CodeSource

ProtectionDomain2
PermissionCollection
CodeSource

1

... ...

1

1 1

Asks

August 12, 2005 (C) 1999-2000 David A. Wheeler 39

ProtectionDomain Class

• ProtectionDomain class
– Created from a CodeSource and a PermissionCollection
– Defines the set of permissions granted to classes;

change the PermissionCollection to change permissions
– Each class belongs to ONE ProtectionDomain instance,

set at class creation time (and never changed again)
– Access to these objects restricted; getting its reference

requires RuntimePermission getProtectionDomain
• One ClassLoader can have >1 protection domain

August 12, 2005 (C) 1999-2000 David A. Wheeler 40

CodeSource Class

• Created from:
– a source (base) URL and
– array of certificates

• Immutable
• “implies” method implements URL partial

matches
– Permits policies to use URL patterns

August 12, 2005 (C) 1999-2000 David A. Wheeler 41

Policy Class

• Provides interface to user policy
– Given a CodeSource, returns a PermissionCollection
– Used during setup of ProtectionDomain to set a class’

permissions

August 12, 2005 (C) 1999-2000 David A. Wheeler 42

How a Class and
ProtectionDomain Are Loaded

1. Loaded class C1 requests an unloaded class C2
2. C1’s ClassLoader called, loads C2’s class file,

calls bytecode verifier
3. C2’s CodeSource determined
4. Policy object given CodeSource, returns

Permissions
5. If an existing ProtectionDomain has same

CodeSource & Permissions, reused, else new
ProtectionDomain created; C2 assigned to it

August 12, 2005 (C) 1999-2000 David A. Wheeler 43

Java 2 Runtime Security Check
Algorithm

• If method M requires permission P
– M’s implementation calls current

SecurityManager’s checkPermission(P)
• By default this calls new “AccessController” class

– For each call stack entry, unwind from caller:
– if caller’s ProtectionDomain lacks P, exception (fail)
– if caller called “doPrivileged” without context, return
– if caller called “doPrivileged” with context, check it:

return if context permits P else exception (fail).

August 12, 2005 (C) 1999-2000 David A. Wheeler 44

Examples of Algorithm At Work

• Multiple ProtectionDomains:
– Instance1 M1 calls Instance2 M2 calls System1 M3
– System1 M3 (in System’s ProtectionDomain) asks for a

permission check
– Permissions checked against the ProtectionDomains for

System1, then Class2, then Class1
• doPrivileged call (without context):

– Same example, but first System1 M3 calls doPrivileged
– When permission check requested, ProtectionDomain

for System1 checked and no others checked

August 12, 2005 (C) 1999-2000 David A. Wheeler 45

Context

• getContext() takes a snapshot of current execution
context (“stack trace”)
– snapshot includes ancestor threads
– stored in type AccessControlContext
– results can be stored & can used later to limit privileges

(instead of enabling “all” privileges)
• Purpose: support actions “on behalf of another”

– one thread posts event to another
– delayed actions (“cron” job)

August 12, 2005 (C) 1999-2000 David A. Wheeler 46

Algorithm Implications

• Default privileges are the intersection (minimum)
of all class’ permissions in call tree
– Without doPrivilege, permissions only decrease

• “doPrivilege” enables “all” class’ privileges
– Like Unix “setuid”; enables trusted classes to use their

full set of privileges but only when requested
– Without context enables all privileges
– With context enables only those privileges also in

given context; safe because resulting privileges always
less than without context

August 12, 2005 (C) 1999-2000 David A. Wheeler 47

Warning: Don’t Mix Protected
Variables and Permission Checks
• If a method M1 is not overridden, the

ProtectionDomain of its defining superclass used
• Methods running (even indirectly) with privilege

shouldn’t depend on protected variables
– Attacker creates subclass with new method M2
– M2 modifies protected variable used by M1
– Cause M1 to be invoked; M1 influenced by M2!

• Identified by David A. Wheeler Oct 1999
– Have not seen this in the literature

August 12, 2005 (C) 1999-2000 David A. Wheeler 48

Permission Class

• Permission class
– Encapsulates a permission granted or requested
– Can be set “readonly” (from then on immutable)
– Can be grouped using classes PermissionCollection and

Permissions
• This briefing’s terminology:

– permissions granted to a ProtectionDomain also called
“privileges”

– no separate “Privilege” class

August 12, 2005 (C) 1999-2000 David A. Wheeler 49

Permission Subclasses:
FilePermission Class

• Gives rights to local files/directories
• Path name/pattern

– Specific path: file, directory, directory/file
– All files in directory: directory/*
– All files recursively in directory: directory/-
– For current directory, omit “directory/”
– For all files (dangerous), “<<ALL FILES>>”

• Rights set (1+): read, write, execute, delete

August 12, 2005 (C) 1999-2000 David A. Wheeler 50

Permission Subclasses:
SocketPermission

• Host
– Local machine: “”, “localhost”
– Given machine: IP address or hostname
– All hosts in a domain: *.domain
– All hosts: *

• Portrange
– Single port: portnumber
– Port range: port1-port2, port1-, -port2

• Actions (1+): accept, connect, listen, resolve

August 12, 2005 (C) 1999-2000 David A. Wheeler 51

Permission Subclasses:
PropertyPermission

• Gives rights to properties
– Similar to OS environment variables

• Target
– Specific property: os.name
– Pattern: java.*

• Actions (1+): read, write

August 12, 2005 (C) 1999-2000 David A. Wheeler 52

Permission Subclasses: Other
Permission Subclasses

• RunTimePermission: string with permission name
– createClassLoader
– getClassLoader
– setSecurityManager
– exitVM
– ...

• Many other specialized Permission subclasses
• AllPermission

– special class meaning “all permissions”

August 12, 2005 (C) 1999-2000 David A. Wheeler 53

SecurityManager Changes

• New method checkPermission(P)
– Throws exception if permission P not held, else returns
– All previous “check” methods rewritten in terms of

checkPermission
– Permits creation of new Permissions without changing

SecurityManager
• By default, calls on AccessController class

– AccessController implements the new algorithm

August 12, 2005 (C) 1999-2000 David A. Wheeler 54

GuardedObject (1 of 3)

• To protect one method in all instances, use
SecurityManager directly as shown so far

• To protect a reference to an individual instance,
consider using “GuardedObject”:

requesting
class GuardedObject

Guard

object-to-guard
getObject()

2 checkGuard()3
reply with
object-to-
guard

1

August 12, 2005 (C) 1999-2000 David A. Wheeler 55

GuardedObject (2 of 3)

• GuardedObject class encapsulates object-to-guard
– asks “Guard” interface to determine if access ok
– Permission implements Guard by calling

SecurityManager. checkPermission(self)
– PermissionCollection doesn’t implement (I’ve reported)

• Provider of object-to-guard does the following:
– Instantiates new Guard (e.g., a Permission)
– Instantiates GuardedObject, using object-to-guard and

the guard
– Gives GuardedObject’s reference to requestors

August 12, 2005 (C) 1999-2000 David A. Wheeler 56

GuardedObject (3 of 3)

• Clients who wish to use object-to-guard call
GuardedObject’s getObject()
– GuardedObject instance calls its Guard’s checkGuard()
– if ok, object-to-guard’s reference returned
– if not ok, security exception thrown

August 12, 2005 (C) 1999-2000 David A. Wheeler 57

Java Cryptography Architecture
(JCA) Changes in 1.2

• Adds more APIs that providers can support
– Keystore creation and management
– Algorithm parameter management
– Algorithm parameter generation
– Conversions between different key representations
– Certificate factory support to generate certificates and

certificate revocation lists (CRLs) from their encodings
(Sun implements X.509’s)

– Random-number generation (RNG) algorithm

August 12, 2005 (C) 1999-2000 David A. Wheeler 58

Java Cryptography Extension
(JCE)

• Adds encryption, key exchange, key generation,
message authentication code (MAC)
– Multiple “providers” supported
– Keys & certificates in “keystore” database

• Separate due to export control

August 12, 2005 (C) 1999-2000 David A. Wheeler 59

Other Areas In Development:
JSSE and JAAS

• Java Secure Socket Extension
– Implements SSL

• Java Authentication and Authorization Service
– Based on PAM: pluggable authenticators for

passwords, smart cards, biometric devices, etc.
– Authenticators may be required, requisite (stop on

failure), sufficient (but not required), or optional
– Adds user-centric (vs. code-centric) control:

permissions granted to Principal (not just CodeSource),
implemented through a modified SecurityManager

August 12, 2005 (C) 1999-2000 David A. Wheeler 60

Past Java Security Breaches
(1 of 2)

• 8 Serious Breaches listed in Java Security (1997)
– “Jumping the Firewall” (DNS interaction)
– “Slash and Burn” (slash starts classname)
– “Applets running wild” (evil class loader installed and

creates type confusion)
– “Casting Caution” (failed to test if method private, type

casting)
– “Tag-Team Applets” (create type confusion)

August 12, 2005 (C) 1999-2000 David A. Wheeler 61

Past Java Security Breaches
(2 of 2)

– “You’re not my type” (flaw in array implementation -
type confusion)

– “Casting Caution #2” (as before, but in a loop test
wasn’t repeated)

– “Big Attacks Come in Small Packages” (untrusted code
could be loaded into sensitive packages, e.g. com.ms,
and gain their privileges)

• Others have been announced since
– See http://java.sun.com/sfaq/chronology.html
– Many are problems in bytecode verifier or classloader

August 12, 2005 (C) 1999-2000 David A. Wheeler 62

Malicious Applets
(Staying Within the Sandbox)

• Denial of Service
– Deny platform use (busy threads, loop, exhaust GUI

resources)
– Kill other threads

• Invasion of Privacy
• Annoyance: constant sound
• Flashing display (causes seizures in some users)
• Steal CPU cycles (e.g. crack encryption)

August 12, 2005 (C) 1999-2000 David A. Wheeler 63

Malicious Servlets

• Walking into other WARs
• Exiting the JVM
• Opening sockets
• Reading files in odd directories

August 12, 2005 (C) 1999-2000 David A. Wheeler 64

Malicious JARs

• Discussion only…. 

August 12, 2005 (C) 1999-2000 David A. Wheeler 65

Java Advantages

• Permits controlled execution of less trusted code
(vs. ActiveX)

• Permits fine-grained permission control
• Attention paid to security
• Portability
• “Instant installation”
• Sun’s source reviewable (not open source)

August 12, 2005 (C) 1999-2000 David A. Wheeler 66

Java Security Disadvantages
(1 of 3)

• Hard to prove correct
– complex from security point-of-view
– rapidly expanding/changing
– VM+libraries lacks formal security model

• Many internal interdependencies (vs. reference
monitors); often breaks “all the way”

• Complex dependencies on other systems
– OS, browsers, network (DNS), PKI

August 12, 2005 (C) 1999-2000 David A. Wheeler 67

Java Security Disadvantages
(2 of 3)

• Applets evade many security measures (e.g. most
firewalls)

• Breaches demonstrated
• Many areas immature
• No standardized auditing (MS extension)
• Simplifies reverse engineering of code (problem?)
• Poor performance may encourage security-

weakening “shortcuts”

August 12, 2005 (C) 1999-2000 David A. Wheeler 68

Java Security Disadvantages
(3 of 3)

• Weak against denial-of-service & nuisances
• Insecure implementation defaults (e.g. null

ClassLoader or SecurityManager)
• Security policy management too complex for

endusers and weak administrative support
• Flexible policies accepted by users may permit

hidden breaching interactions

August 12, 2005 (C) 1999-2000 David A. Wheeler 69

Key Points

• Progression of Access Control Flexibility
– JDK 1.0: Sandbox + total trust of local applications
– JDK 1.1: Above + optional total trust with signature
– SDK 1.2: Above + Fine-grained access control

• Java 2 ProtectionDomains
– Checks call tree, by default intersection of permissions
– doPrivilege permits permissions to be re-enabled

• GuardedObject to protect specific objects

August 12, 2005 (C) 1999-2000 David A. Wheeler 70

Useful References
• Li Gong, Inside Java 2 Platform Security, 1999,

Palo Alto, CA: Addison-Wesley.
– Now in second edition!

• G. McGraw & E. Felten, Java Security: Hostile
Applets, Holes, and Antidotes, 1997, NY: John
Wiley & Sons.

• G. McGraw & E. Felten, Securing Java: Getting
Down to Business with Mobile Code, 1999, NY:
John Wiley & Sons, http://www.securingjava.com

August 12, 2005 (C) 1999-2000 David A. Wheeler 71

Useful Websites

• Sun’s Java website: http://java.sun.com
• Existing Java programs/info available at:

– http://www.gamelan.com
– http://www.jars.com (Java Applet Rating Service)

• RST’s Java Security Hotlist
– http://www.rstcorp.com/javasecurity/links.html

