
Forensic Analysis of
Volatile Data Stores

Because sometimes, your memory just fails you

CERTConf2006

Tim Vidas

 2

Who am I?

• Tim Vidas
– Sr. Tech. Research Fellow

– UNO/PKI/NUCIA

– Certs: CISSP, 40xx, Guidance,
AccessData etc.

– Instructor: UNO, Guidance, LM
RRCF

 3

Assumptions

• Only talking about x86 architecture

• Only talking about windows (nt
based)

• Only talking about ‘normal’ setups
(no ‘weird’ boot switches or builds)

 4

Evidence Volatility

• Memory (more volatile)

• Processes

• Network connections

• File system

• Disk Block (less volatile)

 5

Live system consequences

• Running processes

• Active network connections,
activities

• Logged in users

• Encryption

• Viruses (one-half)

 6

When to pull the plug

• We’ve touched on it before,
– Secure the Crime Scene?

• Yellow tape
• Entrance granted to only authorized

people

– Computer crime scene is where?
• Yellow tape the whole internet?

• Pulling the plug
– “dirty shutdown” fairly regardless of OS
– Bootable media analysis, r/o mount

 7

When to pull the plug

• Why not?
– Ongoing activity
– Volatile information

• Ram
• Net connections
• Etc

– Clean shutdown can cause MANY changes to the
system

– Leaving on can cause changes…
• Investigate before shutdown
• Possible response strategy

– If duplication is deemed necessary, shutdown
– If ongoing activity needs attention, or the system

cannot be downed, live-response.

 8

In place analysis

• Who had access to the system?
– Who was supposed to

• Is authentication required?

• What type of networks are present
and how are they connected?

 9

In place Analysis

• Netstat, search for new files, new
services, high execution times, arp
table, new users, open files,
connected users,

• Fport, ps tools, process explorer,
autoruns, rootkit revealer, regmon,
filemon, listdlls,
– Sys Internals – get the tools while

you can!!!

 10

ifconfig, netstat,
/var/log/messages,
arp

ipconfig, fport, psservice,
promiscdetect,
netstat, nbstat, net,
arp

Network information

who, last, lastlog,
/etc/passwd,
/etc/shadow

net users, psloggedon,
ntlast, dumpusers

Users

ls, find, lsof, file, /etc/rc*
directories,
chkconfig, inittab,
cron, at

dir, afind, macmatch,
autoruns, handle,
pclip

Open Files, startup,
clipboard

ps, w, top, fuser,
modules.conf, ldd, ls

netstat, pulist, tlist, pslist,
listdlls

Runing Processes

uptime, wpsuptime, net statisticsuptime

netstat, datenetstat, date, timeDate and Time

/proc (version, uptime,
meminfo,
filesystems, cpuinfo),
uname

systeminfo.exe, psinfo System Profile

LinuxWindows

Common Incident Response Steps
(Nolan, O’Sullivan, Branson, Waits – Carnegie Mellon 2005)

 11

Decision: in place Analysis

• Most of the commands we’ve seen to
date are considered ‘intrusive’

• As in, they change the state of the
machine – in some cases considerably

• This is one of many reasons you must
document all of your steps

• This also applies to any scripted
response, both your custom ones and
canned ones like IRCR or EnCase’s
SweepCase / SweepEnterprise.

 12

THE PROBLEM

• When encountering a live system, the
official stance for ‘powering down’ a
system for duplication is pulling the plug

• Generally this is considered better than
something like “start -> shutdown”
because no shutdown tasks (cleanup)
is performed

• Unfortunately this doesn’t preserve
much about the system state

 13

THE PROBLEM

• To record system state, responders
may interact with the system using
the aforementioned tools

• However this has an impact to the
system

• Similar to how creating a new file has
the possibility of overwriting un-
reallocated clusters containing latent
data of deleted files, new processes
take up space in RAM

 14

Acquisition

• Varies on situation

• dd
– Just like dd on a hdd
– Under windows there is a

PhysicalMemory object that can be
copied from

– This may be ‘going away’, Server 2003
SP1 indicates this

– Available on Helix CD (greater than
version 1.5 … I believe)

 15

Acquisition

• dd if=\\.\Device\PhysicalMemory
of=memory.bin bs=4096

• 4096 – page size

• Memory.bin – normally you would not
want this to go onto the suspect disk…
otherwise you are potentially over-
writing quite a bit of potential evidence

 16

Acquisition

• Premeditation
– This is usually not the case

– If you can plan ahead
• enabling full crash dumps
• and crash on CTRL-SCRL Lock keys

– Possibly even special hardware
dumping device

 17

My Computer

 18

Crash keys
• HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Cr

ashControl
•

CrashDumpEnabled REG_DWORD 0x0 = None
CrashDumpEnabled REG_DWORD 0x1 = Complete memory dump
CrashDumpEnabled REG_DWORD 0x2 = Kernel memory dump
CrashDumpEnabled REG_DWORD 0x3 = Small memory dump
(64KB)

•
Related keys of interest are:

• AutoReboot REG_DWORD 0x1
DumpFile REG_EXPAND_SZ %SystemRoot%\Memory.dmp
MinidumpDir REG_EXPAND_SZ %SystemRoot%\Minidump

 19

Forcing Crashes

• REG_DWORD named
CrashOnCtrlScroll with a value of 1
added to
HKEY_LOCAL_MACHINE\SYSTEM\Cu
rrentControlSet\Services\i8042prt\Para
meters

• New functionality to windows!
– Right control key plus two presses of scroll

lock crashes the system

• Only works on PS2 keyboards (not usb)
!!!! (argh)

 20

Forcing Crashes

• NotMyFault
– Mark Russinovich
– involves loading a small driver (~7 kb)

called MyFault.sys
– user level application NotMyFault.exe (~50

kb).
 The user executable issues calls to the

kernel loaded driver which crashes the
system on behalf of the user level
executable in various ways. This pair of
files can force a number of crash
conditions in Windows

 21

Acquisition: Time Sliding View

• Of course with a hdd type media there is
an intrinsic benefit of the media being
static

• When considering volatile stores, the
data is continuously in use
– No write blockers
– No MD5 comparison to original

• The duplicate is not going to accurately
represent a single point in time, but
rather a “time sliding view” of the store

 22

Acquisition: Privs
• Having “permission” to create an

image
– Both in the form of “written permission”

if the situation warrents this
– And system permissions

• Administrator / root / poweruser?

• Upon initial response having the
appropriate permissions may not be
the case
– this makes things interesting
– There may be other talks about this… 

 23

Memory Analysis

• Traditionally RAM information isn’t
even available

• In the rare cases that it is available,
the analysis involves very simplistic
actions such as running strings on
the image
– Research note: strings produces about

50-80 MB of largely unusable text for
typical 512 MB RAM dumps

– 50-80 MB is better than 512, but still
not particularly useful

 24

THE IDEA
• What if instead of stomping all over the

current RAM state by running a bunch
of tools we could create an image of
RAM and go back and investigate the
state of the system later?

• This only creates (at a minimum) one
process to perform the copy
– Realistically a few, cause the crash,

possibly insert a few registry keys, but the
bottom line is that the impact is potentially
a LOT smaller than typical response
today

 25

THE IDEA
• To be acceptable, the information

attained from the memory image must
be comparable to information that is
attainable by interacting with the
system

• Methods comparison:
– Information gained:

 FromImageFile >= Interactive Response
– Impact to system:

 FromImageFile <= Interactive Response

 26

THE PROOF (of concept)

• Scan through memory image and
locate processes (task manager
reconstruction)

 27

Finding processes

• Simply:
– Got through memory byte by byte

and look for something that looks like
a Dispatch Header

– If found see if it is a header for an
EProcess (DH can also be threads,
semaphores, etc)

– Perform various checks on potential
process candidates

 28

Process details needed by the kernel-mode component of the Win32 subsystem.
Win32 subsystem process

block
(W32PROCESS)

Image information (base address, version numbers, module list), process heap information, and
thread-local storage utilization. (Note: The pointers to the process heaps start at the first byte after
the PEB.)

Process environment
block (PEB)

Address of object directory to resolve device name references in (supports multiple users).Device map

Address of per-process handle table.Handle table

Executive object describing the security profile of this process.
Access token

(ACCESS_TOKEN)

Interprocess communication channel to which the process manager sends a message when one of the
process's threads causes a debug event.

Debugging LPC port

Interprocess communication channel to which the process manager sends a message when one of the
process's threads causes an exception.

Exception local procedure
call (LPC) port

Current and peak virtual size, page file usage, hardware page table entry for process page directory.
Virtual memory

information

Pointer to working set list (MMWSL structure); current, peak, minimum, and maximum working set size;
last trim time; page fault count; memory priority; outswap flags; page fault history.

Working set information

Series of data structures that describe the status of the portions of the address space that exist in the
process.

Virtual address space
descriptors (VADs)

Limits on nonpaged pool, paged pool, and page file usage plus current and peak process nonpaged
and paged pool usage. (Note: Several processes can share this structure: all the system
processes point to the single systemwide default quota block; all the processes in the interactive
session share a single quota block Winlogon sets up.)

Quota block

Unique process ID, creating process ID, name of image being run, window station process is running
on.

Process identification

Common dispatcher object header, pointer to the process page directory, list of kernel thread
(KTHREAD) blocks belonging to the process, default base priority, quantum, affinity mask, and
total kernel and user time for the threads in the process.

Kernel process
(KPROCESS or
PCB) block

PurposeEPROCESS Element

EPROCESS Structure (Russinovich, Solomon. Windows Internals 2005)

 29

If it looks like an EProcess…
• Use a debugger like WinDbg (with

LiveKD?) to obtain offsets to parts
of an EProcess (version specific)

+0x070 CreateTime : _LARGE_INTEGER
 +0x078 ExitTime : _LARGE_INTEGER

or in a more detail with the same tool as:
+0x070 CreateTime : union _LARGE_INTEGER, 4 elements, 0x8 bytes
 +0x000 LowPart : Uint4B
 +0x004 HighPart : Int4B
 +0x000 u : struct __unnamed, 2 elements, 0x8 bytes
 +0x000 LowPart : Uint4B
 +0x004 HighPart : Int4B
 +0x000 QuadPart : Int8B
+0x078 ExitTime : union _LARGE_INTEGER, 4 elements, 0x8 bytes
 +0x000 LowPart : Uint4B
 +0x004 HighPart : Int4B
 +0x000 u : struct __unnamed, 2 elements, 0x8 bytes
 +0x000 LowPart : Uint4B
 +0x004 HighPart : Int4B
 +0x000 QuadPart : Int8B

 30

…and smells like an EProcess…

• Use these offsets to perform
various checks:
– Except for “IDLE” processes must

have a priority > 0
– Processes must have a page

directory
– All threads must be located in above

the kernel memory bound
– Quantum, workingset max, max #

processes, sync events, etc

 31

…it must be an EProcess!

• In practice it seems that even a
few number of tests (like less than
5) produce extremely accurate
results

 32

Cross Volatility Comparison

• Ideally, the analysis of volatile data
stores can be aided by information
gleamed from non-volatile stores

• For example, a process runs under a
given context. EProcesses contain
an Access_Token which contains a
SID, when reversing from memory
this is as close as we can get to a
username. If the SAM can be
accessed this can be correlated to a
human friendly username.

 33

Cross Volatility Comparison

• Other interesting things can be done
– Passwords in memory
– Crypto keys
– Pagefile to RAM comparison

(verification?)
– Latent files in RAM that have been

wiped from disk

 34

Cross Volatility Comparison

• A ‘side effect’ of crash dumps is that
the page file is over written (is this is
why the page file needs to be at least
the size of physical RAM?).

• The formation of the DMP file is
actually an interesting process…

 35

Helpful slides for
code deciphering

Page Directory Index Page Table Index Byte Offset

Virtual Address

PDI Entry

Page Directory

PTI Entry

Page Table

Page

Physical Memory
Page

Byte

Figure : Virtual Address Translation

 36

Helpful slides for
code deciphering

• Only threads execute, not processes

• RAM is not at volatile as you might
think. Power can be removed (as in
pull the plug) in the order of 30
seconds without effecting the state of
RAM

• Page files are typically capped at
4GB (larger paging is enabled by
having multiple pagefiles)

 37

Helpful slides for
code deciphering

• Most Windows OSes (x86) support 4
or less GB of RAM (enterprise /
datacenter allow for 32-64)

 38

Demo

• Process Locator 0.6
– View the source

• There is a lot in there not mentioned in
the slides, but it’s commented pretty well

– Works on any NT based OS
– On this machine (1.5 MGhz p3m,

1GB RAM) it takes about 30 minutes
to parse 1GB image.

