

The Basics of Linux Security

What every Linux user

should know about security

Presented at the

2007 Nebraska CERT Conference

Adam Haeder

Vice President of Information Technology

AIM Institute

Basic Linux Concepts

 Free (as in speech), Unix-like operating system
 Licensed under the GNU General Public

License
 Runs on everything from a wristwatch to a

mainframe
 Supported by many companies and software

developers from around the world

Basic Linux Concepts

 Shares the same basic concepts with Unix:
 EVERYTHING IS A FILE
 Small, simple commands are chained together to

perform complex operations
 Plain ASCII text configurations files for systems and

application configuration

Basic Linux Concepts

 The proverbial LEGO operating system
 Made up of thousands of different pieces, most

of them following their own rules
 Advantage: you can make it do whatever you

want; you have complete control
 Disadvantage: you can make it do whatever you

want; you have complete control

 Open source nature theoretically makes all
bugs shallow. But they're still there!

Isn't Linux already secure?

 Why do I need to worry about this? I thought
Linux was already secure? Haven't all those
eyeballs in the bazaar squashed every
possible security bug there was to squash?

Short answer: No

The system is only as secure
as the person managing it.

Some general guidelines

 Be paranoid! Just because you're not
paranoid, doesn't mean they're not out to get
you

 Don't think you're not a target
 Trust no one but yourself, and still audit

yourself
 Assume the worst will happen, and be

prepared when it does

Security in Linux

 Security = Knowledge + Implementation
 Or to put it another way,

”Know what's going on, know what needs to be
done, and then do it!”

 Step 1 of security: knowledge

Knowledge gathering tools

 ps – what processes are running
 last – who logged in last and from where
 w – who is on the system right now
 netstat – what ports are open
 nmap – port scanning tool
 lsof – List Open Files
 Log files: /var/log/messages, /var/log/secure,

/var/log/boot.log

ps – Process List

 Part of the 'procps' package
 Many, many options. ps -aux is usually

sufficient for most needs
 while 'ps' gives you a one time snapshot, 'top'

will give you a continually updated snapshot

ps -aux output

 User – who owns the process
 PID – Process ID
 %CPU – How much CPU the process is using
 %MEM – How much memory the process is

using
 VSZ – Virtual memory usage
 RSS – Real memory usage
 TTY – terminal the process is on
 STAT – Process status

ps -aux output (Cont.)

 Start – Date the process started
 Time – Time the process started
 Command – command line of the process
 Status options:

 R – Running D – Waiting on Disk
 S – Sleeping W – Swapped out
 I – Idle N – Niced down
 T – Stopped < - Niced up
 Z - Zombie

Other information tools

 last – login and system boot record
 w – quick snapshot of who is logged in
 netstat – network statistics
 lsof – List Open Files

Examples!

Syslog

 The standard unix syslogd (and klogd) service
logs to files in /var/log

 Configured via /etc/syslogd.conf
 Pros: standard software, been around a long

time, many tools exist to parse and monitor
 Cons: security, overhead, plain text data
 Other options: syslog-ng, minirsyslogd, modular

syslog, multilog, snare

Whom do you trust?

 Where do all these tools get their data? How
can I trust their output?

 I want to be more paranoid, can you help me?

Yes I can!

/proc filesystem

 Source of all informational data on a linux
system

 Not a 'real' filesystem, but kernel memory and
system settings represented as files

 Why? Because.... wait for it.... EVERYTHING
IN UNIX IS A FILE

 Mostly used for read-only data, but has some
read-write portions as well

/proc filesystem

 /proc/meminfo
 /proc/cpuinfo
 /proc/interrupts
 /proc/ioports
 /proc/kcore
 /proc/[0-9]+ directories

Examples!

What does 'secure' mean?

 To at least start down the security road
(because security is a journey, not a
destination), we must know, or be able to find
out:
 All login attempts, for all applications that support

logins
 What processes are running and why
 What files change, when, and why
 What ports are open, what states are they in

Logins

 Common applications that allow logins:
 /bin/login
 sshd
 ftpd
 telnetd (just kidding)
 gdm
 samba
 sudo

Logins

Aug 13 01:20:31 amos sshd[26223]: Invalid user webmaster from 201.17.246.26
Aug 13 01:20:31 amos sshd[26224]: input_userauth_request: invalid user webmaster
Aug 13 01:20:31 amos sshd[26223]: pam_unix(sshd:auth): check pass; user unknown
Aug 13 01:20:31 amos sshd[26223]: pam_unix(sshd:auth): authentication failure;
logname= uid=0 euid=0 tty=ssh ruser= rhost=c911f61a.bhz.virtua.com.br

Aug 13 01:20:31 amos sshd[26223]: pam_succeed_if(sshd:auth): error retrieving
information about user webmaster
Aug 13 01:20:34 amos sshd[26223]: Failed password for invalid user webmaster from
201.17.246.26 port 40048 ssh2
Aug 13 01:20:34 amos sshd[26224]: Received disconnect from 201.17.246.26: 11: Bye
Bye
Aug 13 01:20:36 amos sshd[26227]: pam_unix(sshd:auth): authentication failure;
logname= uid=0 euid=0 tty=ssh ruser= rhost=c911f61a.bhz.virtua.com.br
 user=mysql
Aug 13 01:20:38 amos sshd[26227]: Failed password for mysql from 201.17.246.26 port
40187 ssh2
Aug 13 01:20:38 amos sshd[26228]: Received disconnect from 201.17.246.26: 11: Bye
Bye

Logins

[root@amos log]# cat secure | grep "Failed password for invalid user" | awk -F" " '{print
$13}' | sort | uniq -c | sort -rn
 59 201.17.246.26
[root@amos log]# host 201.17.246.26
26.246.17.201.in-addr.arpa domain name pointer c911f61a.bhz.virtua.com.br.
[root@amos log]#

Aug 13 12:35:35 fileserv smbd[11556]: [2007/08/13 12:35:35, 0] lib/access.c:check_access(327)
Aug 13 12:35:35 fileserv smbd[11556]: Denied connection from (89.120.76.82)
Aug 13 12:35:35 fileserv smbd[11557]: [2007/08/13 12:35:35, 0] lib/access.c:check_access(327)
Aug 13 12:35:35 fileserv smbd[11557]: Denied connection from (89.120.76.82)
Aug 13 12:35:36 fileserv smbd[11558]: [2007/08/13 12:35:36, 0] lib/access.c:check_access(327)
Aug 13 12:35:36 fileserv smbd[11558]: Denied connection from (89.120.76.82)

root@adamh-laptop:~# more /var/log/vsftpd.log
Mon Aug 13 15:30:26 2007 [pid 15738] CONNECT: Client "127.0.0.1"
Mon Aug 13 15:31:14 2007 [pid 15802] CONNECT: Client "127.0.0.1"
Mon Aug 13 15:31:16 2007 [pid 15801] [adamh] OK LOGIN: Client "127.0.0.1"
Mon Aug 13 15:31:25 2007 [pid 15811] CONNECT: Client "127.0.0.1"
Mon Aug 13 15:31:30 2007 [pid 15810] [adamh] FAIL LOGIN: Client "127.0.0.1"

Running Processes

 2 things to do: make sure the processes you
want to stay running are, in fact, running, and
make sure no new rogue processes start

 Simple scripts can be employed to handle both
of these situations.

 From a security standpoint, looking for new
processes is probably the more important task

 Process Change Detection System (PCDS) –
script for watching for new processes

Changes to open ports

 Use lsof or netstat to see current state of your
tcp/udp connections

 netstat -anp or lsof -i
 Verify you know what each process does and

why it needs to listen on a port
 Use a script like nmapparser to watch for

changes to port status

Filesystem changes

 What files change, when and why
 What are the changes?

 File creation/deletion
 File modification or timestamp change
 Permission changes

 Probably the single most important thing to
monitor. Why?
Because everything in Unix is a file!

Filesystem changes

 Filesystem monitors can range from the simple
to the complex

 See script handout for simple version
 More complex versions: AIDE, Tripwire
 All share the same concept: Create a 'snapshot'

of a known good system, then monitor the
system periodically for changes against that
snapshot

Filesystem changes

 Package management tools have basic
filesystem verification built in

 RPM (RedHat Package Manager)
 Used by RedHat, Fedora, SuSE, CentOS and

others
 common uses:

 rpm -qa <- List all currently installed packages
 rpm -q package -l <- list all files provided by package
 rpm -q –whatprovides /bin/ps <- what package gives us

the file /bin/ps
 rpm -Va <- validate all packages on the system

Filesystem changes

 Can you trust your version of /bin/ps?

 S = Size is different

 M = Mode is different

 5 = md5sum is different

 T = creation time is different

[root@fileserv ~]# rpm q whatprovides `which ps`
procps3.2.63.5
[root@fileserv ~]# rpm V `rpm q whatprovides /bin/ps`
[root@fileserv ~]# mv /bin/ps /tmp/
[root@fileserv ~]# touch /bin/ps
[root@fileserv ~]# rpm V `rpm q whatprovides /bin/ps`
SM5....T /bin/ps
[root@fileserv ~]#

Filesystem changes

 Debian-based distributions use dpkg and apt-
get to manage packages

 The debsums program will maintain md5sums
of all files in a package

 Not as flexible as rpm -Va, and it's not built in,
so you have to install it and maintain it

 Once it's installed, it integrates with apt-get so
all new packages that are installed get
md5sums created for them

Filesystem changes

 On existing Debian-based systems (Debian and
Ubuntu being the most popular), run these
commands to get debsums up and running:

aptget install debsums

cd /var/cache/apt/archives

debsums generate=all,keep

aptget d install `debsums l`
reinstall

debsums generate=all,keep

Application Level Security

 Most apps have at least basic ”what IP
addresses are allowed” security options

 Some handle it themselves, others go through
xinetd

 Not the be-all, end-all in security, but it can help
you to not be the low hanging fruit

Application Level Security

 openssh-server: server config file is
/etc/ssh/sshd_config

 Common options:
 Port 12421
 Protocol 2
 PermitRootLogin no
 IgnoreRhosts yes
 HostbasedAuthentication no
 PermitEmptyPasswords no

Application Level Security

 openssh-server uses /etc/hosts.allow and
/etc/hosts.deny to control access by IP

 Common configuration: only allow ssh
connections from IP addresses in the
10.0.0.0/24 range:

/etc/hosts.deny:

sshd: ALL

/etc/hosts.allow:

sshd: 10.0.0.

Application Level Security

 Other common apps that use /etc/hosts.allow
and /etc/hosts.deny for IP based access
restriction:
 portmap
 most ftp servers
 telnetd
 finger server
 nfs

 Some notable ones that do NOT: apache,
mysql

Securing Apache
 Whole books have been written about this
 Usually it's the cgi programs, not apache, that

you have to worry about
 A few basics:

 Only listen on IP addresses you need to
 Don't enable modules you won't use
 Run as a non-privileged user
 Consider a chroot jail

 Good step-by-step howto on configuring apache from
source in a chroot jail:
http://www.securityfocus.com/infocus/1694

 Keep up to date!

http://www.securityfocus.com/infocus/1694

Securing MySQL
 Again, a pretty big topic
 Some basics:

 Only listen on the IP addresses you need to. Start
mysqld with the --bind-address=IP option

 Run on a nonstandard port, and/or filter incoming
connections to that port with your firewall

 Create restricted user accounts for each database
you use, giving only what permissions are required

 Watch those cgi programs! Way too easy to code
poorly and be open to SQL injection attacks

File Permissions
 setuid bit – the program will always execute

with the permissions of the owner, no matter
who runs it

 Find all files on your system that are setuid:

find / perm 4000
 Make sure you know why they are setuid.

Some don't need to be: ping, mount, umount
 Some do: passwd, sudo

Intrusion Detection
 In addition to monitoring logins, file systems

and processes, you can also log what's going
on over your network

 Intrusion Detection systems work by comparing
network traffic against known attack signatures

 If a match is found, it's assumed that an attack
is in place

Intrusion Detection
 Pros: A little more proactive than the reactive

monitoring of processes, files, etc
 Cons:

 Must keep the attack database up to date
 Too many false positives cause the real attacks to

be buried in the noise

 Most popular option on linux is Snort:
http://www.snort.org

http://www.snort.org/

Firewalling with iptables
 Do we need a firewall? Why?
 iptables is the program used to manipulate the

packet mangling options in the linux kernel
 Some possibilities:

 Block traffic from certain IP addresses
 Block traffic to certain ports
 Slow down (throttle) traffic to certain ports
 Enable port-forwarding on a multi-homed system
 Enable network address translation on a network

gateway
 Log everything

Frontends
 Bastille Linux - http://www.bastille-linux.org/

 Menu driven interface to harden a system
 Includes options like setuid permissions, basic

firewalling, restricted limits for users, and many
others

 Most distrbutions come with some sort of
iptables frontend. But there are many others:
 shorewall, guidedog, guarddog, ipkungfu,

kmyfirewall, knetfilter, lokkit, pyroman, fireflier

http://www.bastille-linux.org/

In conclusion

 Security is a journey, not a destination
 Get into the security state of mind
 There is knowledge in knowing,

but wisdom in doing
 The price of security is constant vigilence

The Basics of Linux Security

Presented at the

2007 Nebraska CERT Conference

Adam Haeder

adamh@aiminstitute.org

GnuPG Key:
http://careerlink.com/adamhaederpgp.html

Vice President of Information Technology

AIM Institute

mailto:adamh@aiminstitute.org
http://careerlink.com/adamhaederpgp.html

