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Basic Linux Concepts

 Free (as in speech), Unix-like operating system
 Licensed under the GNU General Public 

License
 Runs on everything from a wristwatch to a 

mainframe
 Supported by many companies and software 

developers from around the world



  

Basic Linux Concepts

 Shares the same basic concepts with Unix:
 EVERYTHING IS A FILE
 Small, simple commands are chained together to 

perform complex operations
 Plain ASCII text configurations files for systems and 

application configuration



  

Basic Linux Concepts

 The proverbial LEGO operating system
 Made up of thousands of different pieces, most 

of them following their own rules
 Advantage: you can make it do whatever you 

want; you have complete control
 Disadvantage: you can make it do whatever you 

want; you have complete control

 Open source nature theoretically makes all 
bugs shallow. But they're still there!



  

Isn't Linux already secure?

 Why do I need to worry about this? I thought 
Linux was already secure? Haven't all those 
eyeballs in the bazaar squashed every 
possible security bug there was to squash?

Short answer: No

The system is only as secure 
as the person managing it.



  

Some general guidelines

 Be paranoid! Just because you're not 
paranoid, doesn't mean they're not out to get 
you

 Don't think you're not a target
 Trust no one but yourself, and still audit 

yourself
 Assume the worst will happen, and be 

prepared when it does



  

Security in Linux

 Security = Knowledge + Implementation
 Or to put it another way, 

”Know what's going on, know what needs to be 
done, and then do it!”

 Step 1 of security: knowledge



  

Knowledge gathering tools

 ps – what processes are running
 last – who logged in last and from where
 w – who is on the system right now
 netstat – what ports are open
 nmap – port scanning tool
 lsof – List Open Files
 Log files: /var/log/messages, /var/log/secure, 

/var/log/boot.log



  

ps – Process List

 Part of the 'procps' package
 Many, many options. ps -aux is usually 

sufficient for most needs
 while 'ps' gives you a one time snapshot, 'top' 

will give you a continually updated snapshot



  

ps -aux output

 User – who owns the process
 PID – Process ID
 %CPU – How much CPU the process is using
 %MEM – How much memory the process is 

using
 VSZ – Virtual memory usage
 RSS – Real memory usage
 TTY – terminal the process is on
 STAT – Process status



  

ps -aux output (Cont.)

 Start – Date the process started
 Time – Time the process started
 Command – command line of the process
 Status options:

 R – Running D – Waiting on Disk
 S – Sleeping W – Swapped out
 I – Idle N – Niced down
 T – Stopped < - Niced up
 Z - Zombie



  

Other information tools

 last – login and system boot record
 w – quick snapshot of who is logged in
 netstat – network statistics
 lsof – List Open Files

Examples!



  

Syslog

 The standard unix syslogd (and klogd) service 
logs to files in /var/log

 Configured via /etc/syslogd.conf
 Pros: standard software, been around a long 

time, many tools exist to parse and monitor
 Cons: security, overhead, plain text data
 Other options: syslog-ng, minirsyslogd, modular 

syslog, multilog, snare



  

Whom do you trust?

 Where do all these tools get their data? How 
can I trust their output? 

 I want to be more paranoid, can you help me?

Yes I can!



  

/proc filesystem

 Source of all informational data on a linux 
system

 Not a 'real' filesystem, but kernel memory and 
system settings represented as files

 Why? Because.... wait for it.... EVERYTHING 
IN UNIX IS A FILE

 Mostly used for read-only data, but has some 
read-write portions as well



  

/proc filesystem

 /proc/meminfo
 /proc/cpuinfo
 /proc/interrupts
 /proc/ioports
 /proc/kcore
 /proc/[0-9]+ directories

Examples!



  

What does 'secure' mean?

 To at least start down the security road 
(because security is a journey, not a 
destination), we must know, or be able to find 
out:
 All login attempts, for all applications that support 

logins
 What processes are running and why
 What files change, when, and why
 What ports are open, what states are they in



  

Logins

 Common applications that allow logins:
 /bin/login
 sshd
 ftpd
 telnetd (just kidding)
 gdm
 samba
 sudo



  

Logins

Aug 13 01:20:31 amos sshd[26223]: Invalid user webmaster from 201.17.246.26
Aug 13 01:20:31 amos sshd[26224]: input_userauth_request: invalid user webmaster
Aug 13 01:20:31 amos sshd[26223]: pam_unix(sshd:auth): check pass; user unknown
Aug 13 01:20:31 amos sshd[26223]: pam_unix(sshd:auth): authentication failure; 
logname= uid=0 euid=0 tty=ssh ruser= rhost=c911f61a.bhz.virtua.com.br
 
Aug 13 01:20:31 amos sshd[26223]: pam_succeed_if(sshd:auth): error retrieving 
information about user webmaster
Aug 13 01:20:34 amos sshd[26223]: Failed password for invalid user webmaster from 
201.17.246.26 port 40048 ssh2
Aug 13 01:20:34 amos sshd[26224]: Received disconnect from 201.17.246.26: 11: Bye 
Bye
Aug 13 01:20:36 amos sshd[26227]: pam_unix(sshd:auth): authentication failure; 
logname= uid=0 euid=0 tty=ssh ruser= rhost=c911f61a.bhz.virtua.com.br
  user=mysql
Aug 13 01:20:38 amos sshd[26227]: Failed password for mysql from 201.17.246.26 port 
40187 ssh2
Aug 13 01:20:38 amos sshd[26228]: Received disconnect from 201.17.246.26: 11: Bye 
Bye



  

Logins

[root@amos log]# cat secure | grep "Failed password for invalid user" | awk -F" " '{print 
$13}' | sort | uniq -c | sort -rn
     59 201.17.246.26
[root@amos log]# host 201.17.246.26
26.246.17.201.in-addr.arpa domain name pointer c911f61a.bhz.virtua.com.br.
[root@amos log]# 

Aug 13 12:35:35 fileserv smbd[11556]: [2007/08/13 12:35:35, 0] lib/access.c:check_access(327) 
Aug 13 12:35:35 fileserv smbd[11556]:   Denied connection from  (89.120.76.82) 
Aug 13 12:35:35 fileserv smbd[11557]: [2007/08/13 12:35:35, 0] lib/access.c:check_access(327) 
Aug 13 12:35:35 fileserv smbd[11557]:   Denied connection from  (89.120.76.82) 
Aug 13 12:35:36 fileserv smbd[11558]: [2007/08/13 12:35:36, 0] lib/access.c:check_access(327) 
Aug 13 12:35:36 fileserv smbd[11558]:   Denied connection from  (89.120.76.82) 

root@adamh-laptop:~# more /var/log/vsftpd.log 
Mon Aug 13 15:30:26 2007 [pid 15738] CONNECT: Client "127.0.0.1"
Mon Aug 13 15:31:14 2007 [pid 15802] CONNECT: Client "127.0.0.1"
Mon Aug 13 15:31:16 2007 [pid 15801] [adamh] OK LOGIN: Client "127.0.0.1"
Mon Aug 13 15:31:25 2007 [pid 15811] CONNECT: Client "127.0.0.1"
Mon Aug 13 15:31:30 2007 [pid 15810] [adamh] FAIL LOGIN: Client "127.0.0.1"



  

Running Processes

 2 things to do: make sure the processes you 
want to stay running are, in fact, running, and 
make sure no new rogue processes start

 Simple scripts can be employed to handle both 
of these situations.

 From a security standpoint, looking for new 
processes is probably the more important task

 Process Change Detection System (PCDS) – 
script for watching for new processes



  

Changes to open ports

 Use lsof or netstat to see current state of your 
tcp/udp connections

 netstat -anp or lsof -i
 Verify you know what each process does and 

why it needs to listen on a port
 Use a script like nmapparser to watch for 

changes to port status



  

Filesystem changes

 What files change, when and why
 What are the changes?

 File creation/deletion
 File modification or timestamp change
 Permission changes

 Probably the single most important thing to 
monitor. Why? 
Because everything in Unix is a file!



  

Filesystem changes

 Filesystem monitors can range from the simple 
to the complex

 See script handout for simple version
 More complex versions: AIDE, Tripwire
 All share the same concept: Create a 'snapshot' 

of a known good system, then monitor the 
system periodically for changes against that 
snapshot



  

Filesystem changes

 Package management tools have basic 
filesystem verification built in

 RPM (RedHat Package Manager)
 Used by RedHat, Fedora, SuSE, CentOS and 

others
 common uses:

 rpm -qa <- List all currently installed packages
 rpm -q package -l <- list all files provided by package
 rpm -q –whatprovides /bin/ps <- what package gives us 

the file /bin/ps
 rpm -Va <- validate all packages on the system



  

Filesystem changes

 Can you trust your version of /bin/ps?

 S = Size is different

 M = Mode is different 

 5 = md5sum is different

 T = creation time is different

[root@fileserv ~]# rpm ­q ­­whatprovides `which ps`
procps­3.2.6­3.5
[root@fileserv ~]# rpm ­V `rpm ­q ­­whatprovides /bin/ps`
[root@fileserv ~]# mv /bin/ps /tmp/
[root@fileserv ~]# touch /bin/ps
[root@fileserv ~]# rpm ­V `rpm ­q ­­whatprovides /bin/ps`
SM5....T    /bin/ps
[root@fileserv ~]# 



  

Filesystem changes

 Debian-based distributions use dpkg and apt-
get to manage packages

 The debsums program will maintain md5sums 
of all files in a package

 Not as flexible as rpm -Va, and it's not built in, 
so you have to install it and maintain it

 Once it's installed, it integrates with apt-get so 
all new packages that are installed get 
md5sums created for them



  

Filesystem changes

 On existing Debian-based systems (Debian and 
Ubuntu being the most popular), run these 
commands to get debsums up and running:

# apt­get install debsums

# cd /var/cache/apt/archives

# debsums ­­generate=all,keep

# apt­get ­d install `debsums ­l` 
­­reinstall

# debsums ­­generate=all,keep



  

Application Level Security

 Most apps have at least basic ”what IP 
addresses are allowed” security options

 Some handle it themselves, others go through 
xinetd

 Not the be-all, end-all in security, but it can help 
you to not be the low hanging fruit



  

Application Level Security

 openssh-server: server config file is 
/etc/ssh/sshd_config

 Common options:
 Port 12421
 Protocol 2
 PermitRootLogin no
 IgnoreRhosts yes
 HostbasedAuthentication no
 PermitEmptyPasswords no



  

Application Level Security

 openssh-server uses /etc/hosts.allow and 
/etc/hosts.deny to control access by IP

 Common configuration: only allow ssh 
connections from IP addresses in the 
10.0.0.0/24 range:

/etc/hosts.deny:

sshd: ALL

/etc/hosts.allow:

sshd: 10.0.0.



  

Application Level Security

 Other common apps that use /etc/hosts.allow 
and /etc/hosts.deny for IP based access 
restriction:
 portmap
 most ftp servers
 telnetd
 finger server
 nfs

 Some notable ones that do NOT: apache, 
mysql



  

Securing Apache
 Whole books have been written about this
 Usually it's the cgi programs, not apache, that 

you have to worry about
 A few basics:

 Only listen on IP addresses you need to
 Don't enable modules you won't use
 Run as a non-privileged user
 Consider a chroot jail

 Good step-by-step howto on configuring apache from 
source in a chroot jail: 
http://www.securityfocus.com/infocus/1694

 Keep up to date!

http://www.securityfocus.com/infocus/1694


  

Securing MySQL
 Again, a pretty big topic
 Some basics:

 Only listen on the IP addresses you need to. Start 
mysqld with the --bind-address=IP option

 Run on a nonstandard port, and/or filter incoming 
connections to that port with your firewall

 Create restricted user accounts for each database 
you use, giving only what permissions are required

 Watch those cgi programs! Way too easy to code 
poorly and be open to SQL injection attacks



  

File Permissions
 setuid bit – the program will always execute 

with the permissions of the owner, no matter 
who runs it

 Find all files on your system that are setuid:

# find / ­perm ­4000
 Make sure you know why they are setuid. 

Some don't need to be: ping, mount, umount
 Some do: passwd, sudo



  

Intrusion Detection
 In addition to monitoring logins, file systems 

and processes, you can also log what's going 
on over your network

 Intrusion Detection systems work by comparing 
network traffic against known attack signatures

 If a match is found, it's assumed that an attack 
is in place



  

Intrusion Detection
 Pros: A little more proactive than the reactive 

monitoring of processes, files, etc
 Cons: 

 Must keep the attack database up to date
 Too many false positives cause the real attacks to 

be buried in the noise

 Most popular option on linux is Snort: 
http://www.snort.org

http://www.snort.org/


  

Firewalling with iptables
 Do we need a firewall? Why?
 iptables is the program used to manipulate the 

packet mangling options in the linux kernel
 Some possibilities:

 Block traffic from certain IP addresses
 Block traffic to certain ports
 Slow down (throttle) traffic to certain ports
 Enable port-forwarding on a multi-homed system
 Enable network address translation on a network 

gateway
 Log everything



  

Frontends
 Bastille Linux - http://www.bastille-linux.org/

 Menu driven interface to harden a system
 Includes options like setuid permissions, basic 

firewalling, restricted limits for users, and many 
others

 Most distrbutions come with some sort of 
iptables frontend. But there are many others:
 shorewall, guidedog, guarddog, ipkungfu, 

kmyfirewall, knetfilter, lokkit, pyroman, fireflier

http://www.bastille-linux.org/


  

In conclusion

 Security is a journey, not a destination
 Get into the security state of mind
 There is knowledge in knowing, 

but wisdom in doing
 The price of security is constant vigilence
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