
Outsourcing: Financial Dream or
Security Nightmare?

Nebraska CERT 2007

Presented By:
Rohyt Belani

Intrepidus Group

 Information security consulting company
 Services include:

 Application Security
 Network Security
 Mobile Security

 Located in Chantilly, VA & NYC
 Internationally acclaimed experts:

 Presented at Black Hat, DefCon, Hack In The Box,
OWASP

 Written articles for SecurityFocus, SC Magazine
 Quoted in Forbes, InformationWeek, Hacker Japan,

BBC UK

Outsourcing: The Business Drivers

 Effective Cost Structure
 Strong Knowledge Base
 24 X 7 Work Model

Some Perspective…

 84% of (500) companies interviewed
outsourced application development --
InformationWeek

 Outsourcing of enterprise applications
growing at 7.3% annually – Gartner

 B2B and B2C applications are top
candidates – CIO Insight

Security: Who’s Job Is It?

 There was an important job to
be done

 Everybody was sure that
Somebody would do it

 Anybody could have done it, but
nobody did it

 Everybody thought that anybody
could do it, but nobody realized
that Everybody wouldn't do it.

 It ended up that everybody
blamed somebody when nobody
did what anybody could have
done

As A Result…

 Recurring Vulnerabilities
 Higher Cost of Fixing Security Bugs
 Regulatory Violations
 Backdoors
 And Sour Relationships…

Recurring Vulnerabilities

Excerpt from a Quarterly Report for a Bank

XXSession Management

XError Handling

XXXXXInput Validation

XXXXAuthorization

Authentication

XXServer Vulnerabilities

Application 5Application 4Application 3Application 2Application 1Area of Assessment

Cost of Fixing Security Bugs

DEVELOPMENTDESIGN
1X

TESTING

CUSTOMERS IN
THE FIELD -

DEPLOYMENT
100X

Relative Costs to Repair Software Defects at Different Stages of
the Software Development Lifecycle

Source: National Institute of Standards and Technology

Regulatory Requirements

 PCI
 California Senate Bill No. 1386
 GLBA
 PIPED
 EFTA
 FISMA

PCI Compliance

6.5 Develop all web applications based on secure coding guidelines
 such as the Open Web Application Security Project guidelines.
 Review custom application code to identify coding vulnerabilities.

6.6 Ensure that all web-facing applications are protected against
 known attacks by applying either of the following methods:

• Having all custom application code reviewed for common
 vulnerabilities by an organization that specializes in
 application security

• Installing an application layer firewall in front of web-facing
 applications.

Note: This method is considered a best practice until June 30,
2008, after which it becomes a requirement.

California Senate Bill No. 1386

 Application should ensure the security
and confidentiality of customer records
and information, Sec.2 and Sec.4

 The application must not disclose to a
nonaffiliated party any nonpublic
personal information, Sec.2 and Sec.4

GLBA

“Vendor management programs must
include establishing security
requirements, acceptance criterion, and
test plans, [and] reviewing and testing
source code for security vulnerabilities”

Source: Federal Financial Institutions Examination
Council (FFIEC) Information Security
Handbook

A Report from the Trenches

Symptoms

 The CEO of a retail organization received
an extortion threat of $250,000 via snail
mail

 The threat – 125,000 customer credit
card numbers would be posted on the
Internet

 The response was demanded in the form
of a footer on the main page of the
retailer’s website

Response

 72 hours were granted by the extorter
 3 investigators X 3 days
 Who compromised the data?

What Followed?

 Web server log analysis – Nothing!
 Employee email inboxes reviewed –

Nothing!
 Database login/logout activity

reviewed – nothing suspicious
 Web application scanned for SQL

injection flaws – No luck!
 Last resort – application code review

Racing Against Time

 > 100,000 lines of
code

 Comprehensive code
review was ruled out

 Resorted to scripted
searches through
code

Scripted Searches

 Did the code contain raw SQL
statements?

 Searched for occurrences of the
“SELECT” in the code

Regex = .*SELECT.*

 The search resulted in an
overwhelming number of hits

Scripted Searches

 Searched for occurrences of the
“SELECT *” string to identify SQL
statements where the scope was not
properly limited

Regex = SELECT *.*FROM.*

 The search resulted in 5 hits
 One of the hits was:

SELECT * FROM CardTable

The Code That Made The Call

NameValueCollection coll = Request.QueryString;
String[] arr1 = coll.AllKeys;
...
String[] arr5 = coll.getValues(arr1[4]);
string extra =

Server.HtmlEncode(arr5[0]).ToString();

if (extra.Equals(“letmein”))
{

Cmd = “SELECT * FROM CardTable”;
}

...

Eureka!

 Backdoor – an insider job?
 Reviewed code archives to

detect addition of code
 The first check-in with this

code was made by a
developer contracted from a
third-party in Asia

 Reviewed web server logs
for additional parameter

 Source IP traced back to
Asia!

Another One Bites The Dust…

 Development company
was notified of this
rogue activity

 Local law enforcement
was cooperative

Bridging the Security Divide

 SLAs & Legalities
 Building Security Into

the SDLC
 Security Testing
 Post-Mortem Review

to Identify Systemic
Causes of
Vulnerabilities

SLAs & Legalities

 Define and Classify Security Vulnerabilities
 Document Security Requirements
 Require Detailed Documentation of Security

Design
 Define Acceptance Criteria
 Require Security Aware/Trained Developers
 Security Maintenance

The push must come from the client!

Who Foots The Bill?

Client
 Must be willing to accept the extra line

item in the bill. Yes, security is a value
add!

Software Development Firm
 Hire security architects
 Train developers
 Build security into the SDLC

Building Security Into The SDLC

 Think security from the word go
 Assign a Risk Rating to the project
 Map out Regulatory Requirements to

technical requirements
 Document Security Requirements
 Perform Threat Analysis during the design

phase
 Perform Security Architecture Review
 Code Secure Software
 Test, Test, Test!

Security Testing..Trust, But Verify

 Review Source Code
 Check for logic flaws
 Check for back-end issues e.g. encryption

of data
 Check for backdoors!

 Penetration Testing
 Ensure the risk is below an acceptable

level

Conclusion

 Drive towards outsourced development makes
testing for security even more important

 The client need to ensure that all outsourcers
are complying with your desired security
requirements

 Build security requirements into SLAs
 Validate security before acceptance
 Development companies should view security

as a competitive advantage…
 Now I’m getting a little carried away

Thank You

www.intrepidusgroup.com
rohyt.belani@intrepidusgroup.com

http://www.intrepidusgroup.com/
mailto:rohyt.belani@intrepidusgroup.com

