
  8/21/08

Hacker’s 
Invitational

What happens when you invite 30 Universities to 
hack you?

Presenters

Jonathan Bender
Luke Wentz



  

.Overview

• Recap
– CTF

– Tools

• The Monster (packet capture)
– Tools

– Deciphering

– WTF just happened?

• Exploits
– Misconfiguration

– Injection

– Disassembly

– Buffer Overflow

• Wrap-Up



  

.Recap

• Capture the Flag (CTF)
– UCSB iCTF

– CIPHER4

• Tools
– Network Sniffing (Wireshark)

– Proxies (Paros, Burp)

– Disassembly (IDA)

– Packet Injection (Nemesis)

– Firewall (IPTables, etc…)

– TCP Wrappers

• Why this matters
– Education/Training

– Awareness



  

.The_Monster

• Capture from UCSB iCTF
• 1.2 GB in volume, 5.0MB 

chunks
• Contains: 

– HTTP

– SSH

– Media Streaming

– Scans

– etc… (nearly every dirty trick in 
the book)



  

.More_Tools

• Ngrep
– Use grep against pcap captures 

or live traffic

– Pattern matching against packet 
contents and header data

• Pcapmerge
– Stitch multiple pcap files into a 

single file



  

.Exploits

• Focused on UCSB iCTF and 
CIPHER4

• Application Level Attacks

1. Misconfiguration

2. Injection

3. Buffer Overflow

4. Disassembly

• System Level/Other



  

.Configuration

• Web Servers
– Admin Sites

• File Servers
– Permissions

• Custom Applications
– Respect all of the above

• Least Privelage



  

.Injection

• What is vulnerable?
– Any web script that accepts 

input

– Scripts that pass input into other 
programs

• SQL

• Shell

• Why?
• What can it do?

– Execute code server <- Very bad 
mmmkay?

– Denial of Service <- Also not too 
good.

– A general mess <- Where’s the 
mop?



  

.Injection/Protection

• Know your tools and systems
– Determine special characters

– Determine meaningful strings

• Develop input sanitization
– Shell

• Semicolons, slashes, double dots, 
etc…

– SQL
• Quotes, semicolons, dashes, etc…



  

.Buffer_Overflow

• What is vulnerable?
– Anything that accepts input

• How it works:
– Input is larger than buffer

– Input typically contains code

– Stack return pointer overwritten

– New pointer points to arbitrary 
code



  

.
Buffer_Overflow/Protecti

on
• Know your languages
• Know your program
• Validate input size before 

moving
• Use safe methods, arbitrary 

size
• Use safe data types
• Compile with stack protections

– A safeguard, not a fix



  

.Disassembly

• What is vulnerable?
– Almost any compiled code

• Why?
– Determine makeup, resources

– Determine code flow

– Find potential exploits

• Also known as reverse 
engineering



  

.Disassembly/Protection

• What can be done?
– Very little

– Obfuscation (adds complexity)

• Why?
– It is not a direct exploit

– Disassembly does not break 
anything

– Looking at code that is there



  

.More_Tools -part 2

• IDA Pro (Disassembly & 
Debugging)

• GDB, MSDB (Debugging)
• DTrace (Tracing library)
• STrace (Syscall tracing library)
• LTrace (Library call tracing)

• Other
– Rumint (Network Visualization)



  

.Contacts & .Bookmarks

• Jonathan Bender
– jbender@nucia.unomaha.edu

• Luke Wentz
– lwentz@nucia.unomaha.edu

• NUCIA Website
– http://nucia.unomaha.edu

• UCSB iCTF
– http://cs.ucsb.edu/~vigna/CTF

• CIPHER4
– http://cipher-ctf.org


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

