
Death, Taxes, and Imperfect Software:Death, Taxes, and Imperfect Software:
Surviving the InevitableSurviving the Inevitable

Crispin Cowan, PhD
Senior PM, Windows Security
Microsoft

Operating System Security SucksOperating System Security Sucks

 OS security sucks
◦ Every major OS from ships with latent

vulnerabilities
◦ Why can't they get it right?

 Hint: It isn't really the operating system
◦ Bugs in the kernel are very rare
◦ Bugs in the huge pile of programs that ship

with the operating system are very common
 And then you load applications on the OS
◦ And the security sinks to the level of the

weakest application you are hosting

Security Just Generally SucksSecurity Just Generally Sucks
 Much more than other aspects of

computing
◦ Word processors process the words
◦ Music players play the music
◦ Web browsers browse the web
◦ etc.

 But when you get a security system,
you still aren't secure

 Computing is 65 years old
◦ Ready for Medicaid but not ready for

prime time?!
◦ Why can't we get it right after all this

time?

“The reason why
you have people

breaking into
your software is

because your
software sucks.”

Richard Clarke

Because it is HardBecause it is Hard

 For all other kinds of computing, being
correct for normal inputs is sufficient
◦ Reliable software does what it is supposed to

do
 But that is not enough for security
◦ Secure software does what it is supposed to

do, and nothing else
 Security is really simple: only use perfect

software
◦ ... but there is a supply side problem

Why Doesn't the Market Fix This?Why Doesn't the Market Fix This?

 If security is important, throw money at the
problem?

 This doesn't happen in practice because:
◦ Developers are lazy, don't like to check return codes,

etc.
◦ Languages are unsafe

 Customers (and magazine product reviewers)
react to shiny buttons more than quality:
◦ You can see shiny buttons
◦ Therefore managers won't give developers the time

and tools to do software right
 Features. Quality. Ship date. Choose 2
◦ Guess which two are the popular choices

So Really So Really GoodGood Vendors Should Vendors Should
Be Delivering Secure Products ... ?Be Delivering Secure Products ... ?
 Kinda :-(Diligence helps ...
◦ Good coding practices
◦ Peer review
◦ QA, penetration testing, fuzz testing ...

 .. but benefits are limited
◦ You can test for what should happen
◦ You cannot test for what shouldn't happen

in the presence of arbitrary input

Meet Alan TuringMeet Alan Turing
(CS grads can read some mail for a bit :-)(CS grads can read some mail for a bit :-)

Alan Turing's Cute TheoremAlan Turing's Cute Theorem
 Gödel, 1931
◦ A mathematical system complex enough to represent

itself cannot be both consistent and complete
◦ Consistent: all theorems are true
◦ Complete: all true statements are provable

 Turing's lame corollary 1932
◦ Imagine a machine that can compute states based on

input
◦ Give it an infinite tape drive
◦ You cannot write a program that will analyze any

other program + input and decide if it will halt or not
 Minor side effect: invented computers :-)

Proving Turing's Halting Problem:Proving Turing's Halting Problem:
DiagonalizationDiagonalization
 Consider some hypothetical

program X that can solve
Turing's Halting problem
◦ Ask X to analyze program 1, 2, 3,

...
◦ When you ask X to analyze itself,

program it to loop if X halts
◦ So if it halts, it loops, and if it

loops, it halts
◦ Contradiction! -> X cannot exist

 Simplest form:
“This is a lie.”

If this
program

halts?

Halt

Yes

No

The Halting Problem AppliedThe Halting Problem Applied

 If you can't write an analyzer to
determine halting, then you can't decide
◦ If a program will or won't write to a given

memory location
◦Will or won't overflow a buffer
◦Will or won't grant unintended access

 Is or is not secure

So We're Doomed?So We're Doomed?

 Not doomed ...
◦ Security professionals have lifetime

employment :-)
 But what to do?
◦ Building secure programs is undecideable
◦ Must instead build belt & suspenders

protection layers that defend the system
against vulnerable components
◦We used to call this “secure architecture”
◦ Now we call it Intrusion Prevention

Meet John BoydMeet John Boyd
(CS grads can wake up again :-)(CS grads can wake up again :-)

Boyd's OODA LoopBoyd's OODA Loop
 Boyd was an air force fighter pilot
 Invented OODA: a new way to think about

air combat:
◦ Observe your surroundings
◦ Orient yourself to your context
◦ Decide what to do
◦ Act on that decision

 Air combat winners are those with the
fastest accurate OODA loop

 Turns out this applies to computer security
too

OODA and Intrusion PreventionOODA and Intrusion Prevention

 Use OODA to classify IPS according to
◦ When: Time in the software life cycle where IPS is inserted

 Earlier is faster
 Later is more precise
 Design time, implementation time, run time
◦ Where: Place in the network architecture where IPS is

inserted
 Closer to the incident is more precise
 Farther out has broader impact, easier to deploy
 Network or Host
◦ What: Kind of mediation applied

 Detection is easier if you don't have precision, but doesn't protect
 Prevention requires precision to be tolerable

WhenWhen

Design Time: Saltzer&Schroeder's Design Time: Saltzer&Schroeder's
8 Principles of Secure Design8 Principles of Secure Design
 These principles have held up well over time, but

some more than others
◦ Least privilege is a spectacular success
◦ Least common mechanism not much used, with

common mechanism that is carefully constructed
fares better

 Unfortunately, these principles also turn out to be
too expensive to apply
◦ Easier to just ship crap :-)

 Users should demand “least privilege” operation
as a feature!
◦ If it isn't there, buy a different product

Implementation Time: Static Implementation Time: Static
AnalysisAnalysis
Source Code Checkers
 Syntax checkers: grep

for bad stuff
◦ gets, strcpy, printf(str, ...)

 Semantic checkers:
◦ Type checking: use all

your data consistently
◦ Taint analysis: detect

whether you filtered
user input before
depending on it

 Ask your vendor if they
use these tools

Binary Checkers
 Similar analysis of

binary programs
 Useful for enterprises
◦ Large risk, so can

afford to spend time
on this
◦ Dependent on

proprietary
applications that don't
provide source code

 Use these tools if
your vendor does not
audit their own code

... that thing I said you couldn't do :-)

Implementation Time:Implementation Time:
Better Languages and CompilersBetter Languages and Compilers
 Compiler Defenses:
◦ StackGuard (USENIX

1998)
 GCC and Microsoft /gs
◦ FormatGuard

 Dynamic languages: Python,
Ruby
◦ Previously known as

SmallTalk
◦ Instead of vulnerability you

get “uncaught exception”
◦ but in the mean time, it lets

you ship the broken code

 Static languages: Java,
C#
◦ Previously known as PL/1
◦ Instead of vulnerability,

you get “type error,
program rejected” at
compile time

 What about C++?
◦ No: not type safe,

because it still supports
pointer arithmetic
◦ C++: the safety of C, and

the performance of
SmallTalk :-)

Run Time:Run Time:
Library and Kernel EnhancementsLibrary and Kernel Enhancements
 Libsafe: libc with smarter big-7 string functions
◦ strcpy & friends introspect arguments, barf if the

target is plausibly in the caller's stack frame
 Open Wall Linux: non-executable stack
◦ Standard on classic CPUs, problematic on x86
◦ Prevents instant shell code injection

 PaX/ASLR: non-executable heap
◦ Standard on classic CPUs, very problematic on x86
◦ Solution: fun with TLBs

 NX/DEP: x86 finally gets non-executable pages
 RaceGuard: blocks temp file race attacks

WhereWhere

Where: Network or HostWhere: Network or Host

WhatWhat

Detection or PreventionDetection or Prevention
 “Intrusion detection” is what you call it when

your detector is too lame to prevent the
attack
◦ Too slow to prevent attack before it happens
◦ Too inaccurate to allow it to automatically block

 Prevention (automatic blocking) requires
speed and precision
◦ Limits you to detection techniques that are fast

and precise
◦ Complex detection methods will come too late
◦ Heuristics can be wrong, so can't let them

automatically block

Presumed Innocent?Presumed Innocent?
Or Presumed Guilty?Or Presumed Guilty?
 All those block bad behavior, and allow

everything else
◦ Misuse prevention
◦ Default allow
◦ Signature-driven security: AV, network IDS
◦ What happens when attackers invent a new “bad”

thing?
 Anomaly prevention:
◦ Specify what is allowed, and block all else
◦ Policy-driven security

 Which to use?
◦ Misuse prevention easier to live with
◦ Anomaly prevention more secure

Statistical Anomaly DetectionStatistical Anomaly Detection

 Forrest et al: “Sense of Self” IEEE S&P 1996
◦ Inspired by biological immune systems to

distinguish “self” from “other”
◦ Approach: “self” is applications whose syscall

sequences match a pattern
◦ Implementation: several MB of stats on rolling n-

gram sequences of syscalls
◦ Result: if you train it hard enough, it can detect

intrusion and not disrupt legitimate actions
◦ > Sana Security

Statistical Anomaly Detection and Statistical Anomaly Detection and
Mimicry AttacksMimicry Attacks
 Problem: Mimicry attacks
◦ Attacker crafts attack so that its sequence of

syscalls mimic the legitimate patterns
◦ Use NOP syscalls to pad the attack sequence,

e.g. open() on non-existent files or files that
don't matter

 Improvement: measure more factors
◦ Syscall parameters, address called from, time,

etc.
 Response: more detailed mimicry
 Result: Arms race

Access ControlsAccess Controls

 Instead of judging activities as “good” or
“bad”, just decide definitively who can
access what and how

 Design issues:
◦ How to specify “who”
◦ How to specify “what”
◦ How to specify “how”
◦ How to abstract all this because controlling

every bit is too much

Network Access ControlsNetwork Access Controls
 Firewall: mediates access between networks
◦ Based on source and destination IP address, port

number, and protocol, i.e. stuff up to Layer 4
◦ Rules are absolute: stuff gets through, or it doesn't
◦ Default deny: everything blocked except what you

allow
 Network Intrusion Detection and

Prevention: also mediates access between
networks
◦ Based on packet content and context
◦ Rules might be heuristic: gets through if it smells ok
◦ Rules might be signature-based, i.e. default allow

So a NIDS is Just a Flaky So a NIDS is Just a Flaky
Firewall?Firewall?
 Well ... yes
 Network traffic is very regular up to layer 4
◦ Can use strict, regular rules to regulate flow

 Network traffic is very irregular above layer
4
◦ I.e. application content
◦ Zillions of applications, new ones come along all

the time
 You can build a default-deny NIDS
◦ But you will hate it
◦ It blocks everything it doesn't understand

Why Would I Want a Flaky Why Would I Want a Flaky
Firewall?Firewall?
 Signature-based NIDS can only block known

vulnerabilities
◦ NIDS is a kludge that you use when you can't patch

your bugs
 Why would I want that?
◦ Because sometimes you can't patch your bugs
 Machine is in a mission-critical production mode and cannot

be halted
 Vendor hasn't issued a patch
 Patch hasn't been QA'd yet
 Patch just sucks

 Use NIDS to mitigate weakness in your patching
strategy

Host Access ControlsHost Access Controls
De-perimeterizationDe-perimeterization
 OS features to let you specify who can

access what on the local machine
 Discretionary access control: he who

creates the data can grant access to anyone
else

 Mandatory access control: he who owns
the system decides who can access a given
resource, no matter who you are
◦ Allows system manager to strive for the principle

of least privilege

Access Control Lists vs. Access Control Lists vs.
CapabilitiesCapabilities
 Access Control Lists: security rules

are associated with the object (file)
 Capabilities: security rules are

associated with the subject (user or
process)

 Classic UNIX mode bits are a crude ACL
◦ List of length 1 for user mode and group mode

access

Access Control Lists vs. Access Control Lists vs.
CapabilitiesCapabilities
 Hard to compute least privilege for a user

or process with ACLs
◦ Need to scan all objects in the system to

determine what the subject can access
 To achieve approximate least privilege for

intrusion prevention, want a Capability
system
◦ First Class capability system makes Capabilities

be objects that programs can manipulate
◦ Ambient capability system makes the

capabilities external to the process
 Ambient better for confining legacy software

Least Privilege for ProgramsLeast Privilege for Programs
 1980s: most systems are

timeshare
◦ Need least privilege for users &

groups
 21st Century: most systems are
◦ 1 user workstations
◦ 0 user network servers

 Need least privilege for
programs
◦ Enforce that program does what

it is supposed to do, and nothing
else

Per - Application
Security

D
N
S

Pri
nt

W
eb

C
G
I

M
ail

Fil
e

Application Least PrivilegeApplication Least Privilege

 For Linux
◦ SELinux (Red Hat)
◦ AppArmor (SUSE, Ubuntu, Mandriva)

 For BSD
◦ Systrace

 For Windows
◦ Okena Cisco CSA
◦ Entercept McAfee Intrusion Prevention
◦ Core/SDI Coreforce; quite similar to

AppArmor

SummarySummary

Summary:Summary:
Security is Harder Than it LooksSecurity is Harder Than it Looks
 Making a system secure is very hard
◦ It is expensive
◦ Customers don't demand it
◦ “Is it secure?” is undecidable

 Therefore securing systems is a
continuing process, not a condition
◦ Supply belt and suspenders to defend your

system against its inevitable latent
vulnerabilities
◦We call this Intrusion Prevention

Summary: Intrusion PreventionSummary: Intrusion Prevention

 When: Design time, Implementation
time, Run time

 Where: network or host
 What:
◦ Detect or Prevent
◦ Misuse or Anomaly
◦ Statistical or Access Control

 I'd draw a picture, but that is two nested
3-D cubes

 OODA:
◦ Observe, Orient, Decide, Act

 Winner:
◦ The one with the tightest accurate OODA Loop

 Intrusion Prevention choices
◦ Close to intrusion site will work better
◦ Farther out will cover more ground with a single

tool ... at the cost of speed and accuracy
 As always, whether or not you get what you

pay for, you definitely pay for what you get

