

Securely Architecting the Internal Cloud

Rob Randell, CISSP Senior Security and Compliance Specialist VMware, Inc.

Securely Building the Internal Cloud

- > Virtualization is the Key
- > How Virtualization Affects Data Center Security
- > How Do We Secure Our Internal Cloud?

How Virtualization Affects Datacenter Security

Abstraction and Consolidation

- ↓ New infrastructure layer to be secured
- ↓ Greater impact of attack or misconfiguration

Collapse of switches and servers into one device

- ↓ Lack of virtual network visibility
- ↓ No separation-by-default of administration

How Virtualization Affects Datacenter Security

How do we secure our Internal Cloud?

Use the Principles of Information Security

- > Hardening and Lockdown
- > Defense in Depth
- > Authorization, Authentication, and Accounting
- Separation of Duties and Least Privileges
- > Administrative Controls

Securely Architecting Your Internal Cloud

- > Creating Security Zones
 - Physical or Virtual Segmentation?
 - Separate vSwitches vs. 802.1q VLANs
 - Subzones
- > Isolation of Management Interfaces
 - Access Options to Management Network

Securely Architecting Your Internal Cloud

- Designing in Separation of Duties and Least Privilege
 - Roles and Permissions
 - Key Roles
 - Network Administrator
 - Storage Administrator
 - VM Administrator
 - Other?
 - 3rd Party Virtual Switches
- Library of Secure and Up to Data Templates
 - True Gold Image Capability
- > Resource Management
 - Prevention of DoS

Securely Architecting Your Internal Cloud

Hardening the Platform

- > Hardening the Management Interfaces
 - Follow Guidance
 - VMware Hardening Guide
 - STIG
 - CIS
- > Securing the VMs
- > Auditing Administrator Activities

Defense in Depth

- Security Tools for the Cloud
 - Virtual Firewalls/IDS/IPS
 - Offline AV
 - Encryption
 - Other?

Creating Security Zones

Three Primary Configurations:

- > Physical Separation of Trust Zones
- > Virtual Separation of Trust Zone with Physical Security Devices
- Fully collapsing all servers and security devices into a VI3 infrastructure

Physical Separation of Trust Zones

Advantages

- Simpler, less complex configuration
- Less change to physical environment
- Little change to separation of duties
- Less change in staff knowledge requirements
- Smaller chance of IDS/IPS misconfiguration

Disadvantages

 Lower consolidation and utilization of resources

Virtual Separation of Trust Zones with Physical Security Devices

Advantages

- Better utilization of resources •
- Take Full Advantage of Virtualization **Benefits**

Disadvantages (can be mitigated)

More complexity •

Fully Collapsed Trust Zones Including Security Devices

Advantages

- Full utilization of resources, replacing physical security devices with virtual
- Lowest-cost option
- Management of entire DMZ and network from a single management workstation

Disadvantages (can be mitigated)

- Greatest complexity, which in turn creates highest chance of misconfiguration
- Requirement for explicit configuration to define separation of duties to help mitigate risk of misconfiguration; also requires regular audits of configurations

Potential loss of certain functionality, such as VMotion (Being mitigated by vendors and VMsafe)

Option 1: Maintain separate dedicated switches for network

- Provides strongest isolation
- > Rapidly uses up NICs
- Greatly limits availability options

Option 2: Maintain separate dedicated VLAN on shared vSwitches

- Allows for greater redundancy for performance and availability
- Greater risk of misconfiguration

Example (pictured)

- > 2 x 2-NIC teams
 - Production vSwitch
 - Mgmt vSwitch: Active/Standby reversed for Mgmt, VMotion
- VLANs for portgroup separation

PVLAN (Private VLAN)

- Enables Layer-2 isolation between VMs on the same switch, even though they are on the same subnet
- Traffic from one VM forwarded out through uplink, without being seen by other VMs
- Communication between VMs on PVLANs can still occur at Layer-3

Benefits

- Scale VMs on same subnet but selectivity restrict inter-VM communication
- Avoids scaling issues from assigning one VLAN and IP subnet per VM

🖽 **vm**ware

Virtual switches provide protection by design against typical layer 2 attacks:

- MAC flooding, 802.1q and ISL tagging attacks, Double-encapsulation attacks, Multicast brute-force attacks, Spanning-tree attacks, Random frame attacks
- > Reason for immunity
 - vSwitches don't have to learn MAC address -- they know exactly what endpoints are attached to them
 - vSwitches have as many ports as you need -- don't require any mechanism to trunk or bridge them

Decision factors for using VLANs

- > Beliefs on isolation: is VLAN technology is mature/secure enough?
- > Operational Security: can you maintain a secure configuration?
- > Cost: Can you afford to not do it?

Options for Client Access

- Set up VPN access to Management network
- Create one or more "jump boxes" inside or outside the Management Network
 - Client applications (VI Client, VI SDK application) run on these
 - Access jump box only via RDP or other remote display protocol
 - Close off all other means of access to jump boxes
- > Choose according to factors such as
 - Amount of trust placed in administrators and their environs
 - Level of inconvenience that's tolerable
 - Cost

Separation of Duties

www.are[.]

VM Templates: True "Gold" Images

- > Hardware Independence Allows for True "Gold" Images
- Maintain a Library of Templates
 - Base Image of Each OS
 - Keep Fully Patched
 - Use an automated offline patch management tool if possible.
 - Regular Malware Scanning on Templates
 - Use a tool that can scan offline images
 - Ensures no latent malware embedded in templates
- > Require the use of templates for ALL deployments
 - Exceptions must be approved for any other deployments
 - Put Controls In Place to Enforce This

Host Profiles

Allows for a reduction in setup time and allow you to manage configuration consistency and correctness.

Reference Host

Containment: constrain guest behavior

Prevent resource Denial-of-Service

- > Load balancing of CPU according to sharing policy
- > Storage I/O limited according to sharing policy.
- > Traffic-shaping available for virtual networks

Securing Virtual Machines

Provide Same Protection as for Physical Servers

Host

- > Anti-Virus
- > Patch Management

Network

- Intrusion Detection/ Prevention (IDS/IPS)
- > Firewalls

Conclusion

- > The Internal Cloud Had Great Benefits and Associated Risks
- > Risks Can Be Mitigated With Proper Controls
- > The Classic Principles of Information Security Should be Applied
- > Key Architecture Decisions Must Be Made for Security

Questions?

Rob Randell, CISSP Senior Security and Compliance Specialist VMware, Inc.